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Pictures are from http://www.onera.fr/conferences/micropropulsion/

For “Power MEMS” devices, typically in 
applications where batteries are currently used. 

- high power density 
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Micro spacecraft

Micro turbine

Primary propulsion and attitude control of micro spacecraft. 

Precise positioning control of spacecraft constellations for 
interferometry missions. 

Potential gain in thrust-to-weight ratio

Primary propulsion and attitude control of micro spacecraft. 

Precise positioning control of spacecraft constellations for 
interferometry missions. 

Potential gain in thrust-to-weight ratio
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MicroMicro--Combustion SystemCombustion System

• Power-generation devices currently developed are those that aim to 
generate power in the range of a few watts to milliwatts. The 
corresponding combustion devices are of the order of one 
centimeter in size.

• The characteristic length of micro combustiors being developed to 
date, even in MEMS-sized systems, is sufficiently larger than the 
molecular mean-free paths of air and other gases flowing through 
the systems in which the physiochemical behavior of fluids is 
fundamentally the same as their macro-scale counterparts. 

• As combustion volumes are reduced in size, issues of residence 
time, fluid mixing, thermal management, and wall quenching of 
gas-phase reactions become increasingly important. 

• Surface-induced catalytic reactions is an attractive alternative in 
micro-systems. 

• Power-generation devices currently developed are those that aim to 
generate power in the range of a few watts to milliwatts. The 
corresponding combustion devices are of the order of one 
centimeter in size.

• The characteristic length of micro combustiors being developed to 
date, even in MEMS-sized systems, is sufficiently larger than the 
molecular mean-free paths of air and other gases flowing through 
the systems in which the physiochemical behavior of fluids is 
fundamentally the same as their macro-scale counterparts. 

• As combustion volumes are reduced in size, issues of residence 
time, fluid mixing, thermal management, and wall quenching of 
gas-phase reactions become increasingly important. 

• Surface-induced catalytic reactions is an attractive alternative in 
micro-systems. 
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• For micro-devices with small characteristic lengths and consequently small Reynolds and 
Peclet numbers, the flow is primarily laminar, viscous effects and diffusive transport of 
mass and heat become increasingly important. 

• Low Reynolds number makes mixing of reactants a potential problem in micro-systems. 
• For diffusion flames, molecular diffusion is the rate-controlling process. 
• Since turbulence mixing is weak, species mixing is primarily through diffusion. Based on 

scaling analysis, the diffusion time and corresponding flame length is given by

• Complete and rapid mixing of adjacent laminar streams is desired, as is required for the 
initiation of a chemical reaction. 

• As the device scale is reduced, the increased surface-to-volume ratio results in a large 
heat loss to the chamber wall. Further, the temperature gradient within the solid wall 
decreases due to the reduced Biot number.
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• Complete and rapid mixing of adjacent laminar streams is desired, as is required for the 
initiation of a chemical reaction. 

• As the device scale is reduced, the increased surface-to-volume ratio results in a large 
heat loss to the chamber wall. Further, the temperature gradient within the solid wall 
decreases due to the reduced Biot number.
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• For complete combustion, the flow residence time must be larger than the time 
required for chemical reactions.  For non-premixed combustion, extra time and 
volume are needed for complete mixing. 

• Flame quenching occurs if the total power generated inside the combustor is 
less than the loss to the wall 

• A higher chamber pressure and mass flow rate help prevent flames from 
extinction.  An exceedingly high flow velocity, however, may lead to blowoff. 
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less than the loss to the wall 

• A higher chamber pressure and mass flow rate help prevent flames from 
extinction.  An exceedingly high flow velocity, however, may lead to blowoff. 
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• Micro-scale power generation 
using combustion: 

- micro-combustors/reactors
- micro turbines/engines
- micro-rockets

• Micro-scale power generation 
using combustion: 

- micro-combustors/reactors
- micro turbines/engines
- micro-rockets

3-D Swiss-roll-type combustor-
thermoelectric generator 

developed at USC

3-D Swiss-roll-type combustor-
thermoelectric generator 

developed at USC

MEMS-based gas turbine power 
generator develop at MIT

MEMS-based gas turbine power 
generator develop at MIT

Meso- and micro- scale combustors 
developed at Penn State.

Meso- and micro- scale combustors 
developed at Penn State.
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oxidizer

exhaust

sapphire window

combustion 
volume

• A scaled down version of a macroscopic whirl combustor (Yetter, 
Glassman & Gabler, 2000).

• Made of Inconel with electro-discharge machining (EDM).
• Combustor volume ranging from 10 to 108 mm3.
• Fuel injected perpendicularly to the tangentially injected oxidizer, and the 

flow exits the combustor tangentially.
• Approximate flow residence time on the order of 0.1 to 1 ms for a total 

mass flow rate at around 0.02 g/s (evaluated at 1500K).
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Full conservation equationsFull conservation equations
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Preconditioning method (Hsieh et al. 1997)Preconditioning method (Hsieh et al. 1997)
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Geometry of cylindrical combustorGeometry of cylindrical combustor Pseudo streamlinesPseudo streamlines
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, 20 /in airU m s= , 40 /in airU m s= , 80 /in airU m s=

non-slip upstream endnon-slip upstream end

slip upstream endslip upstream endAir

H2

, 20 /in airU m s= , 40 /in airU m s= , 80 /in airU m s=

• generation of 
recirculation zone is 
caused by centrifugal 
effect.

• viscous effect at head 
end reduces the size 
of flow recirculation.

• generation of 
recirculation zone is 
caused by centrifugal 
effect.

• viscous effect at head 
end reduces the size 
of flow recirculation.
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0 1P atm=

, 20 /in airU m s= , 40 /in airU m s= , 80 /in airU m s=

, 20 /in airU m s= , 40 /in airU m s= , 80 /in airU m s=

0 2P atm=

Air

H2

• Both higher 
injection velocity 
and chamber 
pressure facilitate 
generation of central 
recirculation zone.

• Both higher 
injection velocity 
and chamber 
pressure facilitate 
generation of central 
recirculation zone.
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• Fluid is transported 
downstream mainly in 
outer region.

• Tangential velocity is 
much higher in outer 
region.

• Fluid is transported 
downstream mainly in 
outer region.

• Tangential velocity is 
much higher in outer 
region.
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Iso-surface of temperatureIso-surface of temperature
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Iso-surface of mass fractionIso-surface of mass fraction
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• Flame structure is 
determined by the injection 
directions of fuel and air.

• Flame front is located 
where the fuel and oxidizer 
meet in stoichiometric
proportions.

• Flame structure is 
determined by the injection 
directions of fuel and air.

• Flame front is located 
where the fuel and oxidizer 
meet in stoichiometric
proportions.
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• The flame length 
increases with 
increasing injection 
velocity.

• The flame length 
decreases with 
increasing chamber 
pressure.

• The flame length 
increases with 
increasing injection 
velocity.

• The flame length 
decreases with 
increasing chamber 
pressure.
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0.22 mm H2

Air
0.36 mm

2.38 mm

Products
0.52 mm

Products
0.52 mm0.22 mm H2

3.18 mm

Air
0.36 mm

H2

air
upstream 

flow 
recirculation

downstream 
flow 

recirculation

main 
flow

• Combustion products are 
exhausted through a 
tangential square port.

•Uin,air = 100 m/s

•Pc = 1atm, Tw = 800 K

•Φ = 1.0

• Combustion products are 
exhausted through a 
tangential square port.

•Uin,air = 100 m/s

•Pc = 1atm, Tw = 800 K

•Φ = 1.0

Geometry of cylindrical combustorGeometry of cylindrical combustor

• The flow injected into the 
combustor is divided into 
three parts: main flow, 
upstream and downstream 
recirculating flows.

• The flow injected into the 
combustor is divided into 
three parts: main flow, 
upstream and downstream 
recirculating flows.

Basic flow structureBasic flow structure
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H2

air

H2

air

H2

air

3-D flow evolution3-D flow evolution 3-D flow traces with velocity magnitude3-D flow traces with velocity magnitude

3-D structure of flow reversal zone3-D structure of flow reversal zone
• The small flow velocity in 

the recirculation region 
helps stabilize the flame in 
the upstream regime.

• The small flow velocity in 
the recirculation region 
helps stabilize the flame in 
the upstream regime.
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Distribution of temperatureDistribution of temperature

x = 0.2 mm x = 1.0 mm x = 2.0 mm x = 3.0 mm

z = 0 mm y = 0 mm
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x = 0.2 mm x = 1.0 mm x = 2.0 mm x = 3.0 mm

z = 0 mm y = 0 mm

Distribution of water mass fractionDistribution of water mass fraction

• Reactions occur in a 
limited regime near 
the head end.

• Reactions occur in a 
limited regime near 
the head end.


