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= Primary propulsion and attitude control of micro spacecraft.

= Precise positioning control of spacecraft constellations for
interferometry missions.
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= Potential gain in thrust-to-weight ratio
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Micro spacecraft

= For “Power MEMS” devices, typically in
applications where batteries are currently used.

- high power density

Micro turbine

Pictures are from http.//www.onera.fr/conferences/micropropulsion/
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Power-generation devices currently developed are those that aim to
generate power in the range of a few watts to milliwatts. The
corresponding combustion devices are of the order of one
centimeter in size.

The characteristic length of micro combustiors being developed to
date, even in MEMS-sized systems, is sufficiently larger than the
molecular mean-free paths of air and other gases flowing through
the systems in which the physiochemical behavior of fluids is
fundamentally the same as their macro-scale counterparts.

As combustion volumes are reduced in size, issues of residence
time, fluid mixing, thermal management, and wall quenching of
gas-phase reactions become increasingly important.

Surface-induced catalytic reactions is an attractive alternative in
micro-systems.
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*  For micro-devices with small characteristic lengths and consequently small Reynolds and
Peclet numbers, the flow is primarily laminar, viscous effects and diffusive transport of
mass and heat become increasingly important.

* Low Reynolds number makes mixing of reactants a potential problem in micro-systems.
» For diffusion flames, molecular diffusion is the rate-controlling process.

» Since turbulence mixing is weak, species mixing is primarily through diffusion. Based on
scaling analysis, the diffusion time and corresponding flame length is given by
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* Complete and rapid mixing of adjacent laminar streams is desired, as is required for the
initiation of a chemical reaction.

* As the device scale is reduced, the increased surface-to-volume ratio results in a large
heat loss to the chamber wall. Further, the temperature gradient within the solid wall
decreases due to the reduced Biot number.
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* For complete combustion, the flow residence time must be larger than the time
required for chemical reactions. For non-premixed combustion, extra time and
volume are needed for complete mixing.

« Flame quenching occurs if the total power generated inside the combustor 1s
less than the loss to the wall
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e A higher chamber pressure and mass flow rate help prevent flames from
extinction. An exceedingly high flow velocity, however, may lead to blowoff.
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e Micro-scale power generation
using combustion:

- micro-combustors/reactors
- micro turbines/engines
- micro-rockets

Meso- and micro- scale combustors
developed at Penn State.

Back-view

MEMS-based gas turbine power
generator develop at MIT

3-D Swiss-roll-type combustor-
thermoelectric generator
developed at USC
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* A scaled down version of a macroscopic whirl combustor (Y etter,
Glassman & Gabler, 2000).
* Made of Inconel with electro-discharge machining (EDM).

» Combustor volume ranging from 10to 108 mm?3.

» Fuel injected perpendicularly to the tangentially injected oxidizer, and the
flow exits the combustor tangentially.

» Approximate flow residence time on the order of 0.1 to 1 ms for a total
mass flow rate at around 0.02 g/s (evaluated at 1500K).

combustion L A R

) sapphire window




PENNSTATE

m Theoretical Formulation

w Department of Mechanical & Nuclear Engineering
Full conservation equations
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Preconditioning method (Hsieh et al. 1997) |

00 AE-E,) O0F-F) 0G-G,)_, :
ot ox oy Oz %

ﬁ:p0+pg

raQﬂiaQia(E—Ev ) O(F-F,) &(G-G,)
or ot ox oy oz

O=[p,uv,wI.X.%,....Y, |

o Schematic of three-
Finite volume approach | dimensional adjacent cells
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Geometry of cylindrical combustor | Pseudo streamlines |
l.gﬁlm 0.5 mm 0.1 mm R| L
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One-step reversible reaction Basic flame structure
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Air slip upstream end |

H2

U =20m/s

in,air in,ai in,air
* generation of
recirculation zone 1s

caused by centrifugal
effect.

non-slip upstream end |

* viscous effect at head
end reduces the size
of flow recirculation.

U =20m/s U =40m/ s

in,air in,air
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Air F, =lam|

H2

* Both higher
injection velocity
and chamber
pressure facilitate
generation of central
recirculation zone.

U

in,air
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Mass flux pv,

v
X x=0.00lmm x=0.003mm x=0.005mm
. Tangential velocity v
* Fluid is transported g M Y 76 |

downstream mainly in
outer region.

* Tangential velocity is
much higher in outer
region.

x=0.001mm x=0.003mm x=0.005mm
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Air

H2

T =1300K

Iso-surface of temperature

» Flame structure is
determined by the injection
directions of fuel and air.

» Flame front 1s located
where the fuel and oxidizer
meet in stoichiometric
proportions.

Iso-surface of mass fraction |
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P = latml

Air

H2

* The flame length
increases with
increasing injection
velocity.

* The flame length
decreases with
increasing chamber
pressure.
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Geometry of cylindrical combustor

Products

» Combustion products are

O-ZZImm H, 0.52 mm exhausted through a
- —> -— .
022 mm B, \ tangential square port.
238 mm * Uin,air = 100 m/s
* Pc=latm, Tw= 800 K

»ﬂ 3.18 mm—> cd=1.0
Products Air -—
0.52 Ai :

mmo036mm S Basic flow structure |

* The flow injected into the .
combustor is divided into -

three parts: main flow,

upstream and downstream i
. . air

recirculating flows.

flow

upstream  downstream
flow flow
recirculation recirculation
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3-D flow evolution | 3-D flow traces with velocity magnitude

* The small flow velocity in
the recirculation region
helps stabilize the flame in
the upstream regime.
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Distribution of temperature |
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I Distribution of water mass fraction |

s @ @ e

0.05 0.07 009 0.11 013 0.15 0.17 0."]9 021 0.23 0.25

z=0mm y =0 mm

» Reactions occur in a
limited regime near
the head end.

P

x = 0.2 mm x=1.0 mm x =2.0 mm x = 3.0 mm




