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In the present study, we propose a new surrogate model [common kernel-smoothed proper orthogonal

decomposition (CKSPOD)] to emulate spatiotemporally evolving flows. The model integrates and extends recent

developments inGaussian process learning, high-fidelity simulations, projection-basedmodel reduction, uncertainty

quantification, and experimental design, rendering a systematic,multidisciplinary framework. The novelty lies in the

construction of a commonGrammatrix: theHadamardproduct ofGrammatrices of all observeddesign settings. The

common Gram matrix synthesizes the temporal dynamics by transferring proper orthogonal decomposition (POD)

modes into spatial functions at each observeddesign setting,which remedies the phase-difference issue encountered in

the kernel-smoothed POD (KSPOD) emulation. The CKSPODmethodology is demonstrated through a case study of

flow dynamics of swirl injectors with three design parameters. A total of 30 training design settings and eight

validation design settings are included. The CKSPOD emulation outperforms the KSPOD counterpart, and it is

capable of capturing small-scale flow structures faithfully. The CKSPOD prediction of turbulent kinetic energy

reveals lower uncertainty than KSPOD. The turnaround time of the CKSPOD emulation is about five orders of

magnitude faster than the corresponding high-fidelity simulation, which enables an efficient and scalable framework

for design exploration and optimization.

Nomenclature

C = covariance matrix
d = design point (parameter set)
f = flow property
fh = probability density function
h = liquid-film thickness at injector exit
i, j, k = dummy indices
K = geometric constant
L = injector length
p = design parameters
R = Gaussian correlation function
Rn = injector radius
T = temperature, K

T = common kernel-smoothed proper orthogonal decompo-
sition transfer matrix

t = time
U = left-singular vectors by singular value decomposition
V = right-singular vectors by singular value decomposition
w = kriging weighing number
x = spatial coordinate
α = liquid-film spreading angle at injector exit
β = time-varying coefficients
ΔL = distance between injector inlet and headend
δ = inlet slot width
θ = tangential inlet angle
Λ = diagonal matrix
μ = mean
ρ = density, kg∕m3

ϕ = spatial basis functions

I. Introduction

I N THE study of complex natural phenomena and engineering
systems, high-fidelity simulations have been used for decades to

provide detailed quantification of flow structures and dynamics that
are otherwise hard to obtain from experiments or theoretical analyses
[1–7]. These simulations, however, are computationally expensive
and time consuming. For example, the simulation of propellant
mixing in an azimuthal sector of a biswirl injector with 1.6 million
cells takes 10,000 CPU hours (hexacore AMD Opteron processor
8431) to sweep 1 ms of flow time using large-eddy simulation
(LES) [6]. It is thus impractical to rely solely on high-fidelity simu-
lations for practical design, which often requires the survey of a wide
parametric space. Surrogate models have been implemented to
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improve design efficiency. The objective of this study is to develop
and validate an efficient surrogate model (emulator) to predict a
spatiotemporally evolving flowfield in a faithful manner.
Surrogatemodels are designed to closelymimic the results of high-

fidelity simulation with significantly reduced computing time and
resource [8–11]. Surrogate models can be broadly categorized into
data-fit, multifidelity (hierarchical), and reduced-order models
(ROMs) [12]. Data-fit models are not physics based and are formu-
lated directly from interpolation or regression of simulation data.
Such models fit a response surface connecting input and output data
by evaluating objective and constraint functions in the sampling
space. Jones [13] presented a taxonomy of response surface models
using a general function to represent different data-fit models, includ-
ing polynomial response surface models, kriging [14–17], and radial
basis functions (RBFs) [18,19]. Another data-fit model is support
vector regression [9], which can be viewed as an extension of RBFs;
thismodel designates a thresholdwithin which regression error in the
sample data is acceptable, without affecting surrogate prediction.
Data-fit surrogate models have beenwidely used in aerospace system
design and optimization, but these models can face stiff challenges in
problems with dynamic evolutions and high-dimensional data. Mul-
tifidelity (hierarchical) models can alleviate such an issue by incor-
porating low-fidelity models into high-fidelity models with a bridge
function [20–22], where low-fidelity models are established via
simplification of physical assumptions or reduction of numerical
resolution. However, the prediction accuracy of multifidelity models
may be compromised when the low-fidelity models provide a com-
pletely different trend from the high-fidelity counterpart.
ROMs are also frequently used to overcome the curse of dimen-

sionality issue by constructing a low-dimensional subspace onwhich
the reduced operators or basis functions are sought from the original
high-dimensional datasets. Projection-based ROMs are currently the
most popular ROMs. This approach is often physics based since the
reduced subspace typically contains the key structures of the dynami-
cal system. Projection-based ROMs are particularly effective for
systems whose input–output map is of low rank [23–26]. The most
widely used projection-based ROM in engineering is the proper

orthogonal decomposition (POD) [27]. POD is inherently connected
to the idea of principal component analysis in the area of statistical
learning [28] and Karhunen–Loève decomposition in the stochastic
process literature [29]. In many problems, the POD-based ROM can
capture key structures and dynamics embedded in high-fidelity data,
which can then be used for prediction of a spatiotemporally evolving
flowfield.
The use of POD-based ROMs has been discussed in many studies.

In an early attempt, Ly and Tran [30] applied POD to study the
temperature field in a Rayleigh–Bénard convection problem, and
they used a cubic spline interpolation to predict the POD coefficients.
Audouze et al. [31] employed radial basis functions to model POD
coefficients, and they validated the result against steady-state con-
vection–diffusion–reaction problems. Swischuk et al. [32] proposed
a physics-based parametric surrogate model using POD. In this
paper, several machine learningmethods (including neural networks,
multivariate polynomial regression, k-nearest neighbors, and deci-
sion trees) were used to learn the map between input parameters
and POD expansion coefficients. They considered two engineering
examples, and they found that embedded physical constraints were
important for the learned models. Although these works have intro-
duced some novel ideas for projection-based models, there are con-
siderable limitations. First, these works considered only spatial or
temporal development; no effort was given to problems with con-
current spatial and temporal evolution. Furthermore, all the methods
proposed thus far have focused on training POD coefficients, with
little attention to PODmodes; this may be problematic when applied
to cases with complicated dynamics, varying flow conditions, and
geometric parameters. The POD-based ROM has also been ques-
tioned for its intrinsically linear subspaces, although some nonlinear-
itymay be embedded in POD expansion coefficients. Dynamicmode
decomposition [33,34] was developed to represent nonlinear finite-
dimensional dynamics without linearization by approximating the
modes of the Koopman operator.

In recent years, deep learning methods (in particular, autoen-
coders) have been attempted to construct ROMs for engineering
applications due to their ability to treat system nonlinearity [35–41].
Autoencoders employ a neural-network structurewith two elements:
an encoder for the nonlinear mapping from the high-dimensional
input to low-dimensional manifolds, and a decoder for nonlinear
mapping from low-dimensional manifolds to an approximate repre-
sentation of the high-dimensional input. Lee and Carlberg [38]
implemented deep convolutional autoencoders to obtain reduced
nonlinear manifolds of dynamical systems, which outperformed
the linear subspace ROMs in selected advection-dominated prob-
lems. Xu and Duraisamy [40] proposed a three-level convolutional
autoencoder network (including a convolutional autoencoder, a
temporal convolutional autoencoder, and a fully connected net-
work) for parametric and future-state predictions of spatiotempor-
ally evolving systems. Although deep learning methods embed
nonlinear features through activation functions, the physical con-
nection between reduced nonlinear manifolds trained by deep learn-
ing and actual dynamical structures remains unclear. POD-based
ROMs, on the other hand, provide a direct link between POD spatial
modes and coherent structures of turbulent flows [27].
In this paper, we focus on the development of POD-based surro-

gate models, primarily due to their valuable physical interpretation
of flow dynamics. For situations with different geometries, a
common-grid POD (CPOD) technique was recently established,
which is capable of handling the spatiotemporal evolution of the
flowfield at various design points [17,42]. As a demonstration case,
the method was applied to study the flow dynamics of swirl injec-
tors. The mean flow structures were successfully predicted over a
broad range of geometric dimensions, but the accuracy of the
prediction of instantaneous flowfields required further improve-
ment. A kernel-smoothed POD (KSPOD) techniquewas then devel-
oped [43]. It employs kriging-based weighing functions for all the
POD modes in the design matrix to construct spatial functions at a
new design point. The KSPOD surrogate model significantly
improves the accuracy of prediction of a spatiotemporally evolving
flowfield, but one limitation is that its predictive accuracy drops if
the training samples exhibit distinct physics at different design
points. This has motivated the development of the proposed surro-
gate model, referred to as the common kernel-smoothed POD
(CKSPOD) model. A common Gram matrix using the Hadamard
product is established based on the Grammatrices at each sampling
point to remedy the deficiency of the KSPOD technique when the
training data exhibit distinct physics. Every Gram matrix contains
the temporal dynamics of the corresponding sampling point, and the
common Gram matrix synthesizes these dynamics through ele-
mentwise multiplication. The CKSPOD technique is able to effi-
ciently predict complex flowfields over a broad range of operating
conditions and geometric parameters [44], and it can be efficiently
incorporated into a data-driven emulation framework for design
analysis and optimization [45].
The present paper is structured as follows. Section II provides a

detailed description of the CKSPOD methodology, including the
proposed surrogate modeling framework and its training algorithm.
Section III discusses the uncertainty quantification associated with
the CKSPOD model. In Sec. IV, the framework is applied for study-
ing the spatiotemporal evolution of flow swirl injectors. Section V
concludes this work with thoughts on future work.

II. Common Kernel-Smoothed POD Surrogate
Modeling

A. CKSPOD

In this section,we introduce a novel emulation technique: common
kernel-smoothed proper orthogonal decomposition. CKSPOD pro-
vides an efficient way to train a projection-based surrogate model
using simulation results at observed design settings, and it allows for
predictions (emulations) over the desired design space in practical
turnaround times. It also circumvents the issue of phase differences
(sign differences of eigenvectors) commonly found in the KSPOD
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method by constructing a transfer matrix in the data reduction
process.
The fundamentals of POD are briefly introduced first. POD is a

model reduction method that extracts orthogonal basis functions and
associated temporal coefficients based on the energy norms. From a
physical perspective, POD provides valuable insight into the coher-
ent structures in a flowfield. For a spatiotemporally evolving flow, the
variable of interest f at spatial location x and time t can be written as

f�x; t� �
Xm
k�1

βk�t�ϕk�x� (1)

where βk�t� and ϕk�x� represent the time-varying coefficient and
spatial function (mode shape) of the kthmode, respectively. Note that

ϕk�x� can be interpreted as the spatial distribution of the fluctuation
field of a given flow variable (for example, pressure, density, temper-

ature, and velocity components). The temporal coefficient βk�t�
characterizes the dynamic evolution of the mode. A spectral analysis

of βk�t� can be employed to identify flow periodicity and correspond-
ing characteristic frequencies. The index k in Eq. (1) denotes the rank
of the energy content of each mode, indicating the prevalence of the
corresponding flow structures in the field. The total number of
extracted PODmodesm is equal to the number of available snapshots
of flowfield in the data here.
For a sampling plan with p design parameters, the number of

design settings q can be determined by the design of experiment
[46]. The vector form of the parametric values at design setting i is
denoted as di ∈ Rp. The spatiotemporal database of the flowfield
f�x; t;di� at design setting i can be represented by a matrix
Xi ∈ Rn×m, where m is the number of snapshots and n is the total
number of computational cells. The latter is usually much larger than
the former: a situation particularly in large-scale numerical simula-
tions of flowfields. The matrix Xi can be factorized in the following
form through singular value decomposition (SVD):

Xi � UiΛiV
T
i (2)

Here,Ui is ann × n orthonormalmatrix spanning the column space of
Xi, Λi is an n ×m diagonal matrix of singular values, and Vi is an
m ×m orthonormal matrix spanning the row space of Xi. Ui and Vi

can be computed from the eigenvalues and eigenvectors of XiX
T
i and

XT
i Xi, respectively. Let Ci be the inner product of the data matrix

XT
i Xi, which is alsoknownas theGrammatrix. The eigenvectors ofCi

make up the columns of Vi, i.e.,Ci � ViLiV
T
i , whereLi � ΛT

i Λi ∈
Rm×m is the diagonal matrix of eigenvalues of Ci.
All POD modes and time-varying coefficients of Xi can then be

written as

Φi � XiVi (3)

Bi � Vi (4)

where Φi�fϕk
i �x�;k�1;2;:::;mg∈Rn×m, and Bi�fβki �t�;k�

1;2;:::;mg∈Rm×m. The reconstructed flowfield can be expressed as

Xi � ΦiB
T
i (5)

Model reduction is possible when the number of PODmodes selected
for reconstruction is truncated at a lower rank of r (r < m). The POD
technique is frequently used to develop projection-based surrogate
models in computational fluid dynamics.
As mentioned in the Introduction (Sec. I), CPOD and KSPOD

surrogatemodels have been proposed for problemswith varying flow
conditions and geometries [17,42]. CPOD concatenates all training
information into a large matrix, X � �Xi; i � 1; 2; : : : ; q� ∈ Rn×mq,
which is then used to build the CPOD covariance matrix and CPOD
modes. To do this, a physics-guided common-grid system is designed
for the projection of the original database. A set of CPOD modes
are obtained following SVD, and the corresponding time-varying

coefficients at a new design setting are determined by the kriging

procedure [17,42]. One limitation of CPOD, however, is that it aims

to use a small number of modes to capture data from snapshots over

the design space. Such snapshots naturally span a higher-dimensional

subspace compared to a POD of the same rank, and so an SVD

truncation for CPOD results in higher variance outside of the CPOD

subspace, which may produce an averaging effect on the flow field.

Consequently, the prediction accuracy of instantaneous flow infor-

mation is compromised.
To overcome the limitations of CPOD, the KSPOD technique

constructs spatial functions using the kriging-weighted average of

POD modes at every sampling point, retaining dominant structures

across all design points [43]. The method considerably improves

prediction of an instantaneous flowfield. Amajor difficulty, however,

arises when the POD modes at different sampling points deviate in

phase, as manifested by the element signs in the POD mode matrix.

To this end, we propose a CKSPOD emulation to circumvent the

issue of phase shift and provide faithful prediction of spatiotemporal

flow dynamics in the present study.We now discuss the details of the

proposed methodology.
In CKSPOD, a common Gram matrix C, which contains data

information of all training cases, is constructed as the Hadamard

product of the Grammatrices of these cases. The Hadamard operator,

denoted as ∘, is the element-to-elementmultiplication of twomatrices

of similar dimension as follows:

�
a11 a12
a21 a22

�
∘
�
b11 b12
b21 b22

�
�

�
a11b11 a12b12
a21b21 a22b22

�
(6)

Accordingly, the common Gram matrix can be written as

C�C1 ∘C2 ∘ ::: ∘Cq��V1L1V
T
1 �∘ ::: ∘�VqLqV

T
q ��VLVT (7)

where V is the column matrix of eigenvectors of C, and L is the

corresponding diagonal matrix. The Gram matrix Ci contains the

temporal dynamics of the corresponding sampling point i, and the

common Gram matrix synthesizes these dynamics through element-

wise multiplication using the Hadamard product. According to the

Schur product theorem, the common Gram matrix remains to be

positive semidefinite. This operation can adjust the phase-shift issue

encountered in the previously proposed KSPODmodel. Note that an

inherent assumption applied in Eq. (7) is that the number of snapshots

m collected for each design setting is identical. This ensures that all

Gram matrices are of the same dimension, and it enables the Hada-

mard product. For problems with different geometries and computa-

tional grids, an additional procedure is needed to project the original

simulation data into a common-grid space [17].
If we also defineΠ as the notation of the Hadamard product,C can

be organized as

C�Πq
j�1Cj�Ci ∘Π

q

j�1

j≠ i

Cj�ViLiV
T
i ∘Π

q

j�1

j≠ i

Cj (8)

Directly using the PODmodes from the original Grammatrix of each

training case, as in KSPOD, the CKSPOD technique implements the

commonGrammatrix in Eq. (8) to deduce spatial functions and time-

varying coefficients for the training cases. The transferred spatial

functions of the design setting i, denoted as Φ 0
i , are written as

Φ 0
i � XiV � XiCVL

−1 (9)

SubstitutingC using Eq. (8),Φ 0
i can be related to the original POD

modes Φi in the following form:
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Φ 0
i �XiVi

8>>><
>>>:

2
6664LiV

T
i ∘

0
BBB@Πq

j�1

j≠ i

Cj

1
CCCA

3
7775
�
VL−1

�
9>>>=
>>>;
�XiViT i�ΦiT i

(10)

Here, the matrix T i is defined as

T i �

2
664LiV

T
i ∘

0
BB@Πp

j � 1

j ≠ i

Cj

1
CCA
3
775VL−1 (11)

We callT i the CKSPOD transfer matrix, which converts the original
POD modes to the spatial functions at each design setting. To use
these spatial functions properly with kriging-based weights for the
new design setting, a normalization process is performed:

~Φi �
Φ 0

i

kΦ 0
ik2

(12)

Accordingly, the transferred matrix of time-varying coefficients is
expressed as

~Bi � VTkΦ 0
ik2 (13)

Once the transferred matrices of new spatial functions and time-
varying coefficients are deduced, kriging is implemented to develop
the basis functions and coefficients for a new design setting.

B. Kriging Model

Kriging, also known as Gaussian process (GP) regression, models
the responses over the input space as a sample drawn from aGP. For a
set of design settings fdi ∈ Rpgqi�1, the observed functions of interest
are weighting parameters of spatial basis modes and corresponding
mode coefficients. Based on the training dataset of the di − yi pair,
with a new input dnew, kriging predicts the corresponding response
ynew. Themathematical formula of kriging in terms of prediction ynew
is given by

ynew � E�y�dnew�jy� � μ̂� rTnewR
−1�y − 1nμ̂� (14)

where μ̂ � 1TqR
−1y∕1TqR−11q is themaximum likelihood estimate of

μ, 1q is aqvector of ones, andR is aq × qmatrix of a reparameterized

squared-exponential correlation function whose (i, j)th entry is

r�di;dj��exp

�
−
Pp

k�1θk�dkj−dki�2
�

with θk � −4 log dk. Also,

rnew is apvectorwhose ith entry is r�dnew;di�. This allows for amore
numerically stable optimization of maximum likelihood estima-
tors [17].
Replacing y in Eq. (14) with the column vectors of ~Bi ( ~β

k
i , k �

1; : : : ; m), the predicted time-varying coefficients at unobserved

design setting B̂new (β̂knew, k � 1; : : : ; m) can be obtained.
The spatial basis functions are calculated in a slightly different

way. Kriging is used to predict the weight of each spatial function at
observed points on the spatial function at the new design setting. To
this end, the observations y are now taken to be the orthonormal
vector ei, where ei is a q vector with one in its ith element and zero
elsewhere. Intuitively, this quantifies the fact that the spatial mode
information extracted in the ith design setting corresponds to only
that setting and not the other q − 1 settings. With this in mind, the
resulting predictor in Eq. (14) can be viewed as the predicted weight
for that particular spatial mode at the new design setting dnew,
denoted as ŵnew;i This procedure is repeated for each of the p unit

vectors �ei�qi�1, from which the q weighting parameters �ŵnew;i�qi�1

can be obtained. The weighting parameters are normalized to ensure
their summation equal to unity.

Theweighting parameters are subsequently used to predict the new
spatial function modes through a weighted average of the extracted
modes at the new design settings, which are expressed as

ϕ̂k�dnew; x� �
Xq
i�1

ŵnew;i
~ϕk
i (15)

With the time-varying coefficients and spatial functions obtained
using Eqs. (14) and (15), the predicted spatiotemporal flowfield at a
new design setting is

X̂�dnew; x; t� �
Xm
k�1

β̂k�dnew; t�ϕ̂k�dnew; x� (16)

Based on the mathematical formulation described earlier in this paper,
Algorithm 1 outlines the steps of the CKSPODapproach. First, prepare
the data matrix from numerical simulations. Second, construct the
common Gram matrix based on the Gram matrix at each observed
design setting using the Hadamard-based product. Third, build the
transfer matrix and create new spatial functions and corresponding
coefficients at all design settings. Fourth, introduce kriging to establish
spatial functions and time-varying coefficients at a new design setting.
Finally, construct the spatiotemporal flowfield at the newdesign setting.
Note that theKSPOD approach [43] directly uses the original POD

modes Φi and coefficient Bi at each design setting i to perform the
kriging process using Eq. (14). Correspondingly Eqs. (15) and (16)
are updated using different spatial functions and time-varying coef-
ficients at the new design setting. For comparison, the results of the
KSPOD approach are also presented in the following section.

III. Uncertainty Quantification

For surrogatemodeling, it is also crucial to quantify the uncertainty
of the prediction to assess the model accuracy. Here, we assume that
the database created by high-fidelity LESs is reliable and accurate,
and the uncertainty of statistical prediction primarily results from the
kriging process. Our previous work in CPOD [17,42] has shown that,
by invoking the conditional distribution of the multivariate normal
distribution, the kriging-predicted time-varying coefficients at a new
design setting follow the Gaussian distribution:

β�dnew�jf ~β�di�gqi�1 ∼ N�β̂; Σ̂� (17)

Here, theminimummean square error (MMSE)predictor β̂ forβ�dnew�
jf~β�di�gqi�1 and its corresponding variance are given by

β̂�dnew� � μ� ��rTnewR−1� ⊗ Im�� ~β − 1p ⊗ μ� (18)

Σ̂ � Vfβ�dnew�jfβ�di�gqi�1g � �1 − rTnewR
−1rnew�T (19)

where Im, 1n, and T are the m ×m identity matrix, the 1-vector of q
elements, and the m ×m covariance matrix, respectively.
Similarly, the variance associated with theweights of the predicted

spatial functions during kriging at a new design setting can also be
represented by Eq. (21), except with T as an identity matrix. The
uncertainty quantification (UQ) of the final prediction using Eq. (16)
can be calculated through the propagation of the uncertainties of the
weights for the time-varying coefficients and the spatial functions.
The spatiotemporal variance is expressed as

VfX�x;t;dnew�gjfX�x;t;di�gqi�1

�
Xm
k�1

V
n
~β�dnew�jf~β�di�gqi�1

oXq
i�1

Vfŵi�dnew�jfw�di�gqi�1gf ~ϕk
i �x�g2

(20)

The spatiotemporal variance of the reconstructed flowfield using
KSPOD follows a similar format, but the transferred spatial functions

3294 CHANG ETAL.

D
ow

nl
oa

de
d 

by
 G

eo
rg

ia
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 A
ug

us
t 3

1,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
06

05
74

 



are replaced by the original POD modes of the observed design

settings (fϕk
i �x�gqi�1).

To define and illustrate theUQof the proposedmodels, the derived
quantity of turbulent kinetic energy (TKE) is implemented, which is
defined as

κ�x; t� � 1

2

X
i∈�x;y;z�

fvi�x; t� − �vi�x; t�g2 (21)

wherevx�x; t�,vy�x; t�, andvz�x; t� correspond tovelocitycomponents
in the x, y, and z directions, respectively. Note that κ�x; t� is important
because it is able to measure the energy within turbulent eddies and
vortices. Therefore, the MMSE predictor and pointwise confidence
interval (CI) for κ�x; t� (see theorem 1 in Ref. [17]) at a new design
point dnew can be computed by combining Eq. (21) and the variable of
each predicted model. This type of computation of the distribution
function has been extensively studied [47,48], and these methods are
used for computing the pointwise CI of κ�x; t� in Sec. III. With this in
hand, the prediction and UQ of TKE from the CKSPOD and KSPOD
are compared with the simulated TKE at the validation design point.

IV. Model Validation: Swirl Injectors

The proposed CKSPOD emulation methodology is applied to the
design of a swirl injector. Swirl injectors have been widely used to
achieve efficient mixing and combustion in propulsion and power-
generation systems [1,16]. The performance of the CKSPOD tech-
nique is examined in detail in this section.

A. Swirl Injector Configuration

Figure 1 shows sectional views of the simplex swirl injector of
concern [16–18], which are identical to the one used in our previous
KSPOD work [43]. Liquid oxygen (LOX) is tangentially introduced
into the injector through orifices. In this study, the orifices are replaced
by a slit on the injector wall; the slit width δ is carefully chosen to
ensure amass flow rate identical to that of the discrete orifices.A liquid
film forms along the injector wall [49–52]. A hollow gaseous core is
formed in the center region due to the conservation of angularmomen-
tum. The liquid film exits the injector as a thin conical sheet and
subsequently undergoes rapid atomization. The detailed flow dynam-
ics of this type of simplex swirl injector under supercritical conditions
has previously been thoroughly studied using LES [50,51].
The selection of injector design variables requires careful assess-

ment of their influences on flow dynamics. Themajor design attributes
include the injector length L, radius Rn, tangential inlet width δ,
tangential injection angle θ, and distance between the inlet and head-
end ΔL. A sensitivity analysis described in previous studies [17,42]
has identified δ, θ, andΔL as themost significant parameters. They are
thus selected as the designparameters in the current study. The baseline
geometry and operating conditions of the injector (including the LOX
inlet temperature Tin, the ambient temperature T∞, the ambient pres-
sure p∞, and the mass flow rate _m) are tabulated in Table 1.
The range for each design variable is listed in Table 2. The distance

between the inlet and headend ΔL is typically 1.5–2.0 times the
diameter of the injection orifice [49]; the location depends on a
tradeoff to avoid 1) excessive viscous losses when the injection slit
is too close to the headend, and 2) low-frequency oscillations due to
the presence of a recirculation zone if the inlet is too far from the
headend. The design ranges for the injector width δ and angle θ are

selected based on the desired values of the film spreading angle

(50–62 deg) and the thickness (0.66–1.50 mm) at the injector exit.

With the selected design parameters and their ranges, the sliced

Latin hypercube design (SLHD) method is implemented to gen-

erate the design settings with the n � 10p rule of thumb for sample

size [53]. A total number of 30 design settings is employed in the

present study, as listed in Table 3 [32]. The three design parameters

are significantly influenced by the inlet velocity uin, ranging from
5.71 to 40.43 m∕s. The 30 training cases are thus classified into

four groups in terms of uin (in meters per second) as follows:

Fig. 1 Schematic of swirl injector.

Table 1 Baseline injector
geometry and operating conditions

Parameter Value

R, mm 4.50

Din, mm 1.70

L, mm 25

_m, kg∕s 0.17

Tin, K 120

T∞, K 300

p∞, MPa 10

Table 2 Design space

Design variable Design range

θ, deg 35.0–62.2

δ, mm 0.27–1.53

ΔL, mm 0.85–3.40

Table 3 Design matrix and associated inlet velocity informationa

Case
δ,
mm

θ,
deg

ΔL,
mm

uin,
m∕s

ur,
m∕s

uθ ,
m∕s K Cluster

1 0.28 57.92 1.59 40.43 21.47 34.26 7.44 D
2 0.63 40.81 1.93 12.35 9.35 8.07 1.64 B
3 0.82 52.39 0.96 11.79 7.20 9.34 1.98 B
4 1.10 32.76 2.57 6.42 5.40 3.47 0.69 A
5 1.12 51.88 3.21 8.58 5.30 6.75 1.43 A
6 1.52 46.85 2.23 5.71 3.90 4.16 0.86 A
7 0.38 37.29 1.64 19.53 15.54 11.83 2.37 C
8 0.51 52.89 2.15 19.35 11.67 15.43 3.27 C
9 0.78 43.33 3.12 10.43 7.58 7.15 1.46 B
10 1.03 33.76 0.87 6.89 5.73 3.83 0.76 A
11 1.26 49.37 1.72 7.19 4.68 5.46 1.14 A
12 1.39 60.44 2.61 8.63 4.26 7.51 1.65 A
13 0.47 54.40 2.74 21.87 12.73 17.78 3.80 C
14 0.68 38.80 2.53 11.25 8.77 7.05 1.42 B
15 0.74 48.36 1.89 12.06 8.02 9.02 1.88 B
16 0.93 33.26 1.47 7.63 6.38 4.18 0.83 A
17 1.22 42.82 0.91 6.60 4.84 4.49 0.92 A
18 1.35 57.42 3.17 8.15 4.39 6.87 1.49 A
19 0.32 58.43 2.27 35.58 18.63 30.31 6.60 D
20 0.59 34.77 1.13 12.19 10.01 6.95 1.38 B
21 0.84 49.87 2.83 10.89 7.02 8.32 1.74 B
22 0.99 44.33 1.76 8.35 5.97 5.84 1.20 A
23 1.20 37.79 3.08 6.24 4.93 3.82 0.77 A
24 1.45 55.41 1.55 7.17 4.07 5.90 1.27 A
25 0.40 36.28 2.32 18.27 14.73 10.81 2.16 C
26 0.49 51.38 1.42 19.51 12.18 15.24 3.21 C
27 0.72 53.39 3.29 13.84 8.25 11.11 2.36 B
28 0.95 40.31 1.17 8.18 6.24 5.29 1.07 A
29 1.24 59.43 1.98 9.36 4.76 8.06 1.76 A
30 1.37 43.83 2.78 5.99 4.32 4.15 0.85 A

aNote that cases 1–6 are on slice 1, cases 7–12 are on slice 2, cases 13–18 are on slice 3,

cases 19–24 are on slice 4, and cases 25–30 are on slice 5, corresponding to the symbols

in Fig. 2.
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cluster A with uin<10; cluster B with 10≤uin<18; cluster C with
18≤uin<25; and cluster D with uin > 25.
In SLHD, the space-filling property of the design points in each

slice is optimal. The overall design matrix contains five slices,
and each slice includes six design settings. Figure 2 shows two-
dimensional projections of the design settings categorized by differ-
ent slices. LES-based high-fidelity simulations are performed at all
design settings.

B. High-Fidelity Simulation

The theoretical formulation for high-fidelity simulations is
described in detail in Ref. [54]. It allows for detailed modeling of
mixing and combustion over the entire range of fluid thermodynamic
states of concern [55]. Turbulence closure is achieved bymeans of an
LES technique. Thermodynamic properties are evaluated according
to fundamental thermodynamics theories and a modified Soave–
Redlich–Kwong equation of state [54]. Transport properties, includ-
ing thermal conductivity and viscosity, are determined using
extended corresponding-state principles. Mass diffusivity is esti-
mated based on the Takahashi method, and it is calibrated for high-
pressure conditions [54].
The numerical framework is based on a preconditioning scheme

with a unified treatment of general-fluid thermodynamics [54,56]. It
uses a density-based finite volume methodology along with a dual-
time-step integration technique. Temporal discretization is accom-
plished by a second-order backward difference; and the inner-loop
pseudotime term is integrated via a four-stepRunge–Kutta scheme.A
fourth-order central difference scheme in generalized coordinates is
used to obtain spatial discretization. Fourth-order matrix dissipation
is applied to secure numerical stability with minimum contamination
of the solution. Finally, a multiblock domain decomposition tech-
nique associated with the message passing interface technique for
parallel computing is applied to optimize computation performance.

C. PODModes and CKSPOD Spatial Functions

With spatiotemporal simulation data assigned for all 30 design
settings, a database is established to train the emulator. To justify the
applicability of CKSPOD, the original POD modes are matched to
the transferred spatial functions deduced from the common covari-
ance matrix, which is aliased as the CKSPOD modes for conven-
ience. Figure 3 shows the first four modes of POD and CKSPOD for
the pressure field of case 16. All modes are normalized to facilitate

comparison. The POD and CKSPODmodes exhibit similar features,

which suggests that most significant coherent flow structures in the

original design setting are retained after theCKSPODprocedure. The

energy percentage of each PODmode, however, is consistently larger

than its CKSPOD counterpart. Mathematically, the energy percent-

age is represented by the ratio of the diagonal element (eigenvalue) to

the trace of the diagonal matrixΛ. The energy carried by the fist POD
mode is around 2.5 times of the corresponding CKSPOD mode; this

can be explained by the introduction of the CKSPOD transfer matrix

defined in Eq. (11). This transfer matrix contains the dominant

dynamics embedded in the other 29 design settings, and therefore

reduces the energy percentage of the original POD mode. The

incorporation of the flow dynamics at other design settings may also

contribute to the small circles that appear in the CKSPOD modes.
To further demonstrate the similarity, Fig. 4 shows probability

density distributions of the first four pressure modes of POD and

CKSPOD in case 16 based on the kernel-smoothing function. A

kernel distribution is a nonparametric representation of the proba-

bility density function fh�x� of a random variable, which is written as

fh�x� �
1

nh

Xn
i�1

K
�
x − xi
bw

	
(22)

where n is the sample size, K is the kernel density smoothing

function, and bw is the bandwidth acting as a smoothing parameter.

Fig. 2 Two-dimensional projection of design points obtained by sliced
Latin hypercube design methodology in the design space.

Fig. 3 Pressure POD modes 1–4 for case 16 from cluster A and corre-
sponding CKSPOD modes.

Fig. 4 Probability densities of PODmodes 1–4 for case 16 fromclusterA
and corresponding modes. Vertical lines represent mean values and bw
represents bandwidth of kernel-smoothing function.
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Here, the bandwidth of the kernel-smoothing function is optimally

selected for estimating densities for the normal distribution [57] to

produce a reasonably smooth curve. Similarity is observed between

the probability density distributions of the POD and CKSPOD

modes. Both modes 1 and 3 show negative skew with a tail on the

left. The distributions of the fourth POD and CKSPOD modes are

almost overlapped, with the latter slightly shifted to the left. Mode 2,

on the other hand, shows substantially different distributions, which

are attributed to the operation of the transfer matrix. The transfer

matrix changes the mean value of the distribution and rescales the

magnitude the modes. Such behavior is critical so that POD modes

for all design settings can be automatically adjusted; this is unlike the

situation with the KSPOD approach [43], in which all POD modes

must be manually checked to avoid the occurrence of phase cancel-

lation in the kriging procedure.

Figure 5 shows the accumulated energy percentage of the POD

modes for the pressure field for eight randomly selected cases from the

30 design settings. Also included are the results for the CKSPOD

modes. In the CKSPOD approach, all of the 30 cases are treated using

the identical eigendecomposition process with the same energy accu-

mulation through the CKSPOD transfer matrix. The phase-difference

issue encountered in the KSPOD method is thus remedied. On the

other hand, the energy accumulation is much slower for the CKSPOD

modes, due to the data smoothing effect. It takes the first 173modes to

obtain 90% of the total energy for the CKSPODmethod, as compared

to the first 23–99modes for thePODmethod.Moremodes are required

for theCKSPODapproach to capture the same amount of energy in the

establishment of the emulator. In the present study, the first 522modes,

which cover more than 99% percentage of the total energy, are

included to the train the surrogatemodel and build the spatial functions

and coefficients at the new design setting.

D. Prediction by CKSPOD Emulation

Eight new design settings within the design space are selected as

the validation cases. The parameter settings are carefully determined

to cover a wide range of inlet velocity uin from 5.71 to 40.43 m∕s.
The eight new design settings are categorized into four groups

according to the inlet velocity range: the A group is low, the B group

is intermediate low, the C group is intermediate high, and theD group

is high inlet velocity, as listed in Table 4. Each group consists of two

validation cases to fully evaluate the performance of the CKSPOD

emulation. High-fidelity simulations are also performed at these

settings to validate the predicted results by the emulation.

Figure 6 shows the instantaneous density fields of the LES-based

simulation and the CKSPOD- emulation for case D2. The evolution

of the liquid film (seen in the dense fluid) and its spreading down-

stream of the injection port agree well between the simulation and

emulation.

1. Spatial Distribution

The instantaneous spatial distributions are systematically exam-

ined to evaluate the emulator performance. Figures 7 and 8 show

snapshots of the density field predicted by the LES, CPOD, KSPOD,

and CKSPOD methods for cases A2 and C2, respectively. In both

Fig. 5 Accumulated energy percentage of POD modes for the pressure
field.

Table 4 Design parameters for eight test cases in four
different groups

Case δ, mm θ, deg ΔL, mm uin, m∕s ur, m∕s uθ, m∕s
A1 1.26 44.11 0.94 6.55 4.70 4.56
A2 1.20 41.97 0.90 6.65 4.94 4.44
B1 0.70 40.73 2.71 11.12 8.43 7.26
B2 0.71 52.59 3.24 13.79 8.38 10.95
C1 0.42 37.73 2.41 17.91 14.16 10.96
C2 0.49 57.12 2.88 22.33 12.12 18.75
D1 0.27 50.39 1.40 34.37 21.91 26.48
D2 0.33 60.76 2.32 36.32 17.74 31.70

Fig. 6 Comparison of density fields: LES-based simulation and
CKSPOD emulation. Test case D2 at t � 7.89 ms.

Fig. 7 Comparison of density field: LES-based simulation and predic-
tions by three different emulations. Test case A2 at t � 1.01 ms.
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cases, the CPOD method leads to blurred patterns in the stratified
density layer, where the wavy structures are smoothed. Downstream
of the injector, large-scale vortical motions calculated by the LES
technique are significantly dissipated in the CPOD case. The results
are consistent with the previous finding that the CPOD method can
accurately capturemajor performancemetrics, such as time-averaged
liquid-film thickness and spreading angle but not detailed flow
dynamics [10,11].
The KSPOD method accurately emulates the wavy structures of

the liquid film; however, many small-scale motions within the injec-
tor and vortical structures downstream of the injector exit are not
captured well, as compared to the LES result. The CKSPODmethod
significantly improves the prediction and captures flowmotions at all
scales. The stringy ligaments and small vortices are faithfully emu-
lated. In addition, the spreading of the liquid film and associated
growth of vortical structures downstream of the injector are predicted
with high fidelity.
To further evaluate the performance and applicability of the

CKSPOD method for prediction of the spatial structures of the
flowfield, the density field in test cases B1 and B2 are presented in
Figs. 9 and 10, respectively, for LES, KSPOD, and CKSPOD meth-
ods. Consistent trends of flow structure prediction in the CKSPOD
method are observed here. The consistent improvement of the pre-
dictive capability of the CKSPOD method over the CPOD and
KSPOD methods are clearly observed over a broad range of flow
conditions.

2. Temporal Evolution

The performance of the CKSPOD method is further examined in
terms of the temporal evolution of the flowfield. Figures 11 and 12
show the density field at three different time instants for the KSPOD
and CKSPOD emulations, respectively, for case A2. Also included
are the LES predictions. The KSPOD method is able to predict the
rolling vortices upstream of the injector (x ≤ 15 mm) but produces
weakened surface structures. The phenomenon is attributed to the
possible difference among the POD modes of the training dataset,
which leads to the cancellation of flow dynamics in kriging and
reconstruction [12]. The CKSPOD emulation, shown in Fig. 12, on
the other hand, can capture most significant rolling vortices and the

stringy ligaments revealed in the LES results at all time instants. The
traveling surface wave propagates downstream all the way to the
injector exit at the speed predicted by the LES method.
To establish broad confidence, the validity of the CKSPOD

method is assessed against all test cases. Figure 13 shows the emu-
lation and simulation results at different time instants. The flow
structures and dynamics are well captured. The CKSPOD surrogate
model can achieve faithful predictions of the spatiotemporal evolu-
tion of the flowfield.Although only the density field is shownhere, all
other flow variables of interest (such as temperature and pressure) can
be emulated using the same procedures based on Algorithm 1.

E. Performance Measures

Two performance metrics, liquid-film thickness and spreading
angle at the injector exit, are calculated to quantitatively assess
the model accuracy. Table 5 lists the time-mean values, standard

Fig. 8 Comparison of density field: LES-based simulation and predic-
tions by three different emulations. Test case C2 at t � 0.11 ms.

Fig. 9 Comparison of density field: LES-based simulation and predic-

tions by KSPOD and CKSPOD emulations. Test case B1 at t � 4.62 ms.

Fig. 10 Comparison of density field: LES-based simulation and pre-
dictions by KSPOD and CKSPOD emulations. Test case B2 at
t � 2.1 ms.
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deviations, and relative errors obtained from the LES, KSPOD, and

CKSPOD methods for all validation cases. Time-mean values are

determined by averaging the instantaneous data over a statistically

meaningful duration. SD denotes standard deviation, and the error is

calculated as follows:

εr �
jxsim − xemuj

xsim
× 100% (23)

where xsim represents data from the simulation, and xemu represents data
from emulation. Both the KSPOD andCKSPOD emulators are capable

of producing high-fidelity results of time-mean flow quantities. The

CKSPOD method, however, outperforms the KSPOD method, with

errors on the order of 0.1% for most cases.
The spatial distributions of the time-mean liquid-film surface

along the axial direction are also obtained by averaging more than

1000 snapshots. Figure 14 shows the results along with the LES data.

The CKSPOD-predicted liquid-film surface closely coincides with

the LES predictions, whereas the KSPOD results show discrepancies

near the transient region in cases B1, C1, and D1.
Figure 15 shows the relative errors of the CKSPOD and KSPOD

results. The horizontal dashed lines represent the averaged relative

error �εr for each validation case. The CKSPOD emulation consis-

tently outperforms the KSPOD method. The former has an averaged

error of less than 3% for all cases, which is in comparison with up to

6.4% for the latter. The peak error occurs in the transition stage of the

Fig. 11 Comparisonof density field:LES-based simulationandKSPOD
emulations. Test case A2 at three different time instants.

Fig. 12 Comparison of density field: LES-based simulation and
CKSPOD emulations. Test case A2 at three different time instants.

Fig. 13 Comparison of density fields: LES-based simulation and
CKSPOD emulation.
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liquid-film development and decreases when the film is fully devel-

oped near the injector exit. For both the KSPOD and CKSPOD

methods, the prediction accuracy near the injector exit increases

with increasing inlet velocity magnitude increases from group A to

group D.

To provide more direct insight into the flow dynamics captured by

emulation, Fig. 16 shows the comparison of power spectral densities

of the first four PODmodes of pressure fluctuations between the LES

and emulation results in case C2. The dominant frequencies that

characterize the POD modes are predicted accurately, for example,

0.49 kHz for modes 1 and 4 and 0.65 kHz for modes 2 and 3.

However, the fluctuation magnitudes at these peak frequencies pre-

dicted by emulation underestimate those by LES. Similar compar-

isons are observed in other validation cases.

F. Uncertainty Quantification

For computer experiments, quantification of prediction uncer-

tainty is as important as the prediction itself. In our earlier study,

the one-sidedwidth of the 80%pointwise confidence interval of axial

velocity and the turbulent kinetic energy were used as measures for

the spatial uncertainty quantification [42]. The work demonstrated

the usefulness of uncertainty quantification, not only as a measure of

predictive uncertainty but also as a means for extracting useful flow

physics without expensive simulations. In this subsection, the uncer-

tainty quantification of both KSPOD and CKSPOD emulations are

explored. The turbulence kinetic energy defined in Sec. III is

analyzed.

Figure 17 shows the spatial distribution of time-averaged tur-

bulent kinetic energy predicted by the LES, CKSPOD, and

KSPOD models for case A1 (low inlet velocity) and case C1

(intermediate high inlet velocity). Higher turbulent kinetic energy

occurs along the centerline downstream of the injector exit, where

a recirculating flow is formed due to vortex breakdown [1,4]. The

turbulent kinetic energy predicted by the CKSPOD method bears

close resemblance to that predicted by the LES method. A very

similar recirculating flow in the center is shown betweenCKSPOD

and LES cases. The KSPOD emulation leads to considerable

overprediction for cases A1 and C1. The situation is further

corroborated by the standard deviation, as shown in Fig. 18. The

smaller the standard deviation, the lower the uncertainties. The

CKSPOD method outperforms KSPOD, with a much smaller

standard deviation in turbulent kinetic energy for both validation

cases. Similar observations are made for all other cases and flow

quantities (not shown here).

For cases A1 and C1, the maximum standard deviation takes

place near the LOX inlet (x � 3.5 mm) and the center recirculation

(x � 33 mm) downstream of the injector exit. The LOX inlet

region contains complex flow structures, including separated

flows, shear layers, and corner recirculating flows [17,20]. The

flow evolution is more dynamic, and thus more difficult to predict

accurately. This is consistent with the earlier result in Fig. 14, in

which the first local maximum of error for the liquid-film surface

occurs in the LOX inlet area. Similarly, strong vortical dynamics

downstream of the injector exit increases the uncertainty of

prediction.

Algorithm 1: Common kernel-smoothed POD surrogate model

Data: For each design point in fdigqi�1, prepare spatiotemporally
evolving flowfield data matrix Xi from numerical simulations.

Training: Step 1: Construct the common Gram matrix C based on
Gram matrices of all observed design settings
using Hadamard product [Eq. (8)].

Step 2: Build transfer matrix T using Eq. (11) and create
spatial functions and coefficients at all design
settings [Eqs. (12) and (13)].

Step 3: For each time step tl and each mode k, fit the
kriging model with responses

f ~βk�d1; tl�; : : : ; ~βk�dq; tl�g at observed design

settings of fd1; : : : ;dqg, and the predictive
coefficients for a new design setting dnew are

β̂k�dnew; tl� [Eq. (14)].
Step 4: Perform the kriging model with inputs

fd1; : : : ;dqg, and the predictive function for dnew
is the weight ŵi�dnew� associated with each
design setting i. The predicted spatial function of

mode k, ϕ̂k�cnew; x� is the weighted sum of
corresponding spatial functions at observed
design settings [Eq. (15)].

Prediction: Use Eq. (16) to construct the spatiotemporal flowfield data at the
new design setting.

Table 5 Time-mean liquid-film thickness and spreading angle from
simulation and emulation results

Case
number Analysis

Spreading angle, deg Film thickness, mm

LES KSPOD CKSPOD LES KSPOD CKSPOD

A1 Average 52.846 52.919 52.857 0.629 0.625 0.628
SD 5.185 4.976 4.392 0.169 0.162 0.136

Error, % —— 0.14 0.02 — — 0.51 0.10
A2 Average 52.566 51.959 52.657 0.637 0.657 0.640

SD 5.028 5.016 5.897 0.165 0.166 0.144
Error, % —— 1.15 0.17 — — 3.14 0.41

B1 Average 54.216 53.660 54.373 0.582 0.600 0.595
SD 4.542 4.546 4.969 0.145 0.146 0.119

Error, % —— 1.02 0.29 — — 3.03 2.25
B2 Average 53.811 53.875 53.819 0.594 0.592 0.594

SD 4.226 4.130 3.732 0.136 0.132 0.111
Error, % —— 0.12 0.02 — — 0.40 0.04

C1 Average 57.684 57.713 57.758 0.474 0.473 0.475
SD 3.415 3.086 3.800 0.100 0.089 0.112

Error, % —— 0.05 0.13 — — 0.36 0.04
C2 Average 57.778 57.741 57.750 0.471 0.472 0.471

SD 3.177 3.016 3.244 0.093 0.087 0.077
Error, % —— 0.06 0.05 — — 0.13 0.02

D1 Average 58.998 58.031 58.786 0.379 0.379 0.379
SD 5.389 5.146 4.860 0.107 0.105 0.120

Error, % —— 1.64 0.36 — — 0.02 0.10
D2 Average 61.586 61.334 61.541 0.370 0.377 0.371

SD 3.617 3.893 3.289 0.094 0.101 0.083
Error, % —— 0.41 0.07 — — 1.97 0.26
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G. Computing Time

For the present LES-based simulations, the computing time for
different design settings varied in the range of 10–14 days on around
250–350 CPUs (hexacore AMD Opteron processor 8431). In com-
parison, the time required to build the surrogate model is about
73 min on 10 CPUs, and the time of emulating a new case using
the developed surrogate model is about 7 min on five CPUs. There-
fore, the time savings of emulation is more than five orders of
magnitude, as compared to simulation. The difference between the

KSPOD and CKSPODmethods lies in the execution of eigendecom-
position; the latter takes slightly more CPU time due to extra proce-
dures for building the common Gram matrix and transfer functions.
The overall wall time for the CKSPOD emulator is about 50 s of CPU
time per snapshot, which is roughly 1.2 times longer than theKSPOD
emulation.

V. Conclusions

A new surrogate model based on the common kernel-smoothed
proper-orthogonal-decomposition technique is proposed for efficient
emulation of spatiotemporally evolving flow dynamics. The model
requires the construction of a common Gram matrix using the Hada-
mard product and a transfer matrix, through which all POD modes
and time-varying coefficients at each design setting are transferred to
the same phase (i.e., no sign differences of eigenvectors among all the
spatial modes). The resultant spatial modes and coefficients circum-
vent the phase-difference issue associated with the kernel-smoothed
proper-orthogonal-decomposition technique. The work is validated
against the spatiotemporal flow evolution in a simplex swirl injector
with three design parameters. A total of 30 training design settings are
selected through the sliced Latin hypercube design approach. Eight
validation cases are considered. Large-eddy simulations are per-
formed at both training and validation settings. For comparison, the
emulation results from the KSPOD and CKSPOD methods are
presented along with the LES data. The CKSPOD method provides
much better predictions overall than the KSPOD counterpart in terms
of time-mean flow quantities and spatiotemporal evolution of the
flowfield.
The CKSPOD surrogate model can significantly reduce the com-

puting time at a new design setting by five orders of magnitude, as
compared to an LES-based simulation. The surrogate model devel-
oped in the present work can be effectively applied to a wide range
of engineering and scientific problems involving spatiotemporal
evolution.

Fig. 14 Time-mean development of liquid-film surface along axial
direction, averaged over 1000 snapshots.

Fig. 15 Relative error of time-mean liquid-film thickness along the axial
direction.

Fig. 16 Power spectral densities (PSDs) of first four PODmodes byLES
and emulation in case C2.

Fig. 17 Time-averaged turbulent kinetic energy: cases A1 (left) and C1

(right).

Fig. 18 Standard deviation (STD) of time-averaged turbulent kinetic
energy: cases A1 (left) and C1 (right).
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