
AIAA JOURNAL

Vol. 44, No. 4, April 2006

Systematic Analysis of Lean-Premixed
Swirl-Stabilized Combustion

Ying Huang,∗ Shanwu Wang,† and Vigor Yang‡

Pennsylvania State University, University Park, Pennsylvania 16802

A systematic data-analysis procedure is established to explore the underlying mechanisms responsible for driving
unsteady flow motions in gas-turbine combustors. Various data processing and analysis approaches are developed
and implemented. These include triple decomposition of flowfield, vortex identification, spectral analysis, linear
acoustic modal and hydrodynamic stability analyses, and proper orthogonal decomposition. The work allows for a
detailed investigation of the mechanisms of energy exchange between the mean, periodic, and turbulent flowfields
in a combustion chamber, as well as their collective interactions with chemical heat release. As a specific example,
the combustion dynamics in a lean-premixed swirl-stabilized combustor operating under a variety of conditions is
carefully examined, based on an avalanche of time-resolved numerical data obtained from large-eddy simulations.

I. Introduction

T HE occurrence of combustion instability presents a serious
problem in the development of gas-turbine engines, especially

for low-emission, lean-premixed systems.1,2 The instability arises
from the coupling between oscillatory flow motions and unsteady
combustion and is manifested by self-excited, large-amplitude pres-
sure fluctuations in the combustion chamber. They are highly detri-
mental to combustor operation and may even cause catastrophic
failure in extreme cases. Although several mechanisms respon-
sible for driving combustion instabilities, such as hydrodynamic
instabilities,3 equivalence-ratio fluctuations,4 and flame surface
variations,5,6 have been proposed and studied, many aspects of phys-
iochemical processes and operating parameters dictating the initia-
tion and sustaining of instabilities are still unresolved. The situation
is further complicated for engines that use swirling flow to stabilize
the flame with recirculation, which produces a relatively compact
flame and modifies the heat release distribution. Swirling flow also
tends to induce vortex breakdown and azimuthal instability, thus, it
exercises profound influences on the combustion dynamics.5,7 Fun-
damental investigations into this issue are strongly needed to further
improve our knowledge of combustion instabilities.

The large-eddy simulation (LES) technique is a useful tool for
studying gas-turbine combustion dynamics because the flowfields
of concern are highly unsteady and dominated by large-scale tur-
bulence motions. Huang et al.5 reviewed work on the LES of lean-
premixed gas-turbine combustion with swirl injectors through 2003.
A number of studies have appeared since then. Stone and Menon8,9

investigated a swirl-stabilized combustor flow using LES modeling.
The effects of swirl and equivalence ratio on flame dynamics were
studied. Pierce and Moin10 conducted a numerical simulation of a
coaxial jet combustor. A flamelet/progress-variable approach was
developed to treat nonpremixed turbulent combustion. Selle et al.11

treated a full burner of a premixed gas-turbine engine using LES
for both nonreacting and reacting cases. A strong precessing vortex
core is observed for the nonreacting flows. This vortex, however,
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disappears when combustion occurs. Grinstein and Fureby12 simu-
lated the flowfied in a swirl gas combustor, with emphasis on the
effects of combustor confinement on the flow and flame evolution.
Sommerer et al.13 conducted an LES study of the flashback and
blowoff in a lean partially premixed swirl burner. Wang et al.14,15

recently examined the vortical flow dynamics in swirl injectors with
radial entry under conditions with and without external excitations.
Various flow instability mechanisms, such as the Kelvin–Helmholtz,
helical, and centrifugal instabilities, as well as their mutual interac-
tions, were investigated in detail. Huang and Yang16,17 examined the
influences of inlet flow conditions on the combustion dynamics in
a lean-premixed swirl-stabilized combustor. The flame bifurcation
phenomenon and stability boundary were investigated as a function
of the burner operating conditions.

The aforementioned LES studies have generated an avalanche of
information about the combustion dynamics and flow evolution in
specific geometries of concern under well-defined operation condi-
tions. A huge database has been established, which, however, may
not lead to a corresponding enhancement of our knowledge if the
numerical results are not effectively analyzed. The LES computa-
tions themselves represent meticulous exploratory numerical exper-
iments. It is important to be able to extract phenomenological infor-
mation contributing to understanding and modeling the processes
of concern from these large quantities of detailed flow and combus-
tion data. Although various data processing approaches have been
employed in the preceding studies, and much useful information
has been obtained, a comprehensive and systematic methodology
for treating the numerical data is still desired. The present work ad-
dresses this important aspect of numerical study by establishing a
detailed data analysis procedure, to explore the dynamic processes
in gas-turbine combustors and to identify the underlying mecha-
nisms and key parameters dictating the combustion characteristics.
As a specific example, the methodology is applied to a time-resolved
numerical database for a lean-premixed swirl-stabilized combustor,
obtained previously using an LES technique along with a level-set
flamelet library approach.5,17

The remainder of the paper is organized as follows. In Sec. II
the energy transfer mechanisms among the mean, periodic, and tur-
bulent flowfields are examined using a triple decomposition tech-
nique. The results provide a theoretical foundation for the analysis
of flow oscillations. In Sec. III the relevant information about the
LES database, including numerical formulation, boundary condi-
tion, physical model, and grid resolution are briefly described. The
unsteady flow development and flame dynamics in a lean-premixed
swirl-stabilized combustor are studied in Sec. IV by means of var-
ious data analysis techniques. These include vortex identification,
spectral analysis, linear acoustic modal analysis, linear hydrody-
namic stability analysis, and the proper orthogonal decomposition
method.
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II. Energy Transfer Mechanisms in Turbulent
Reacting Flows

Both random and periodic (coherent) motions exist in many prac-
tical turbulent flows, especially in a gas-turbine combustor. The in-
tricate coupling between these flow motions and flame evolution
plays an important role in determining the characteristics of a tur-
bulent reacting flow. It is important to understand the energy transfer
mechanisms responsible for driving and sustaining periodic oscilla-
tions in a combustor. Reynolds and Hussain18 and Liu19 investigated
the energy transfer between mean, periodic, and turbulent motions
in an incompressible flow using a triple-decomposition technique.
The energy of periodic motion is taken as its kinetic energy. The
main factor contributing to the growth of periodic motion is the
mean correlations between components of the deterministic veloc-
ity. The analysis, later, was extended by Wang and Yang15 and Apte
and Yang20 to accommodate the effect of fluid compressibility using
density-weighted Favre averaging.

In compressible flows, the energy of periodic motion includes
both kinetic and potential energies. In addition, when combustion
takes place, heat release from chemical reactions not only increases
the gas temperature and accelerates the bulk flow motions, but
also provides an additional energy source for periodic flow mo-
tions. The energy transfer mechanisms in a viscous, compressible,
heat-conductive medium were investigated by Chu21 by means of
a Reynolds decomposition technique. The effects of body forces,
heat, and material sources on the addition of energy to small distur-
bances were discussed. The transfer of energy from a steady main
stream was also examined. Chu,21 however, did not distinguish peri-
odic motions from background turbulent fluctuations. In the present
work, the triple-decomposition technique, which allows the random
and periodic motions to be separated from each other, is employed to
investigate the energy transfer mechanisms between mean, periodic,
and turbulent motions, as well as the influence of heat release on
flow dynamics in a turbulent reacting environment. A comprehen-
sive description of the energy exchange mechanisms can be obtained
from the following analysis.

A. Triple Decomposition of Flow Variable
Following the approach of Apte and Yang20 and Huang,22

each flow variable � can be expressed as the sum of density-
weighted long-time-averaged

↔�, periodic (coherent) �a , and tur-
bulent (stochastic) �t quantities as follows:

�(x, t) = ↔�(x) + �a(x, t) + �t (x, t) (1)

The decomposition is achieved using the density-weighted long-
time- and ensemble-phase averaging techniques, denoted by over-
bars and carats, respectively, as shown hereafter. For density-
weighted long-time averaging

↔�(x) = ρ�(x)

ρ̄

ρ�(x) =
[

lim
N → ∞

1

N

N − 1∑
n = 0

ρ�(x, t0 + n�t)

]
where N�t � τ � �t (2)

For density-weighted ensemble-phase averaging

↔�(x) + �a(x, t) = 〈ρ�(x, t)〉
〈ρ〉

〈ρ�(x, t)〉 = lim
N → ∞

1

N

N − 1∑
n = 0

ρ�(x, t + nτ) (3)

Thus,

�a(x, t) = 〈ρ�(x, t)〉 /〈ρ〉 − ρ�(x)/ρ̄

(ρ�)a = 〈ρ�〉 − ρ� = ρa
↔� + ρ̄�a + ρa�a (4)

Here ρ is density, τ is the period of organized oscillation, and t0 is
the temporal location at which steady periodic motions are attained.
Some useful properties that follow from the basic definitions of the
two averages are

ρ(�a + �t ) = 0, 〈ρ�t 〉 = 0, �a �= 0

↔�� = ↔��, 〈�a�〉 = �a〈�〉, 〈↔��〉 = ↔�〈�〉

〈�〉 = �, 〈�a〉 = �a, ρ�a�t = 〈ρ�a�t 〉 = 0 (5)

The last relation states that the density-weighted periodic and tur-
bulent motions are uncorrelated on average. Evaluation of the
ensemble-phase average in Eq. (3) requires calculation and stor-
age of an avalanche of data to achieve statistically consistent and
meaningful results. To bypass this computational difficulty, a win-
dowed Fourier transform is normally used to extract the determinis-
tic motion from the original time-trace data by choosing the Fourier
component at the frequency of concern.20

The averaged kinetic energy per unit volume is defined as follows:

κ = ρui ui/2 = ρ̄
↔
ui

↔
ui/2 + ρ̄

←−−→
ua

i ua
i

/
2 + ρ̄

←−−→
ut

i u
t
i

/
2 (6)

The energy associated with periodic motion ε contains both kinetic
εk and potential εp energies, in accordance to acoustic theories,

ε = εk + εp = ρ̄
←−−→
ua

i ua
i

/
2 + (pa)2/(2ρ̄ · c̄2) (7)

B. Mean, Deterministic, and Turbulent Motion
The mass, momentum, and energy balances for an ideal gas mix-

ture can be written in the following conservation form:

∂ρ

∂t
+ ∂(ρu j )

∂x j
= 0 (8)

∂(ρui )

∂t
+ ∂(ρui u j )

∂x j
= − ∂p

∂xi
+ ∂σi j

∂x j
(9)

∂(ρcvT )

∂t
+ ∂(ρu j cvT )

∂x j
= −∂ q̇ ′′

i

∂xi
− p

∂u j

∂x j
+ 	 + q̇ (10)

where ui , p, and T represent the velocity component in the i th
spatial direction, pressure, and temperature. Here, σi j , q̇ ′′

i , and 	
are the viscous stress tensor, heat flux due to conduction and species
diffusion, and viscous dissipation, respectively; q̇ is the rate of heat
release from chemical reactions. Equation (10) can be rearranged
using the equation of state with the assumption of constant specific
heat ratio γ to become

∂p

∂t
+ u j

∂p

∂x j
= −γ p

∂u j

∂x j
+ (γ − 1)

(
−∂q̇ ′′

i

∂xi
+ 	 + q̇

)
(11)

When the decomposed flow variables defined in Eqs. (2–4) are
applied to Eq. (8), the continuity equations for the mean, determin-
istic, and turbulent flowfields are obtained,

∂ρ̄

∂t
+ ∂(ρ̄

↔
u j )

∂x j
= 0 (12)

∂ρa

∂t
+ ∂(〈ρ〉ua

j + ρa↔
u j )

∂x j
= 0 (13)

∂ρ t

∂t
+ ∂(〈ρ〉ut

j + ρ t u j )

∂x j
= 0 (14)

Note that only the velocity components and temperature are
needed to average with density to avoid density–velocity correla-
tions in the momentum equations and density–temperature correla-
tions in the energy equation. Other flow variables, such as density,
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pressure, and stresses, are decomposed into long-time-averaged, pe-
riodic, and stochastic quantities in the following derivations.

The momentum equation for the mean flowfield is obtained by
taking the long-time average of Eq. (9),

∂(ρ̄
↔
ui

↔
u j )

∂x j
= −∂

(
ρua

i ua
j

)
∂x j

− ∂
(
ρut

i u
t
j

)
∂x j

− ∂ p̄

∂xi
+ ∂σ̄i j

∂x j
(15)

The momentum equation for periodic motion is derived by taking
the ensemble-phase average of Eq. (9) and subtracting Eq. (15),

〈ρ〉∂ua
i

∂t
+ 〈ρ〉(↔

u j + ua
j )

∂ua
i

∂x j
= −〈ρ〉ua

j

∂
↔
ui

∂x j

− ∂
(
ρut

i u
t
j

)a

∂x j
+ ∂

(
ρua

i ua
j

)
∂x j

− ∂pa

∂xi
+ ∂σ a

i j

∂x j
−

ρaℵ↔
u ,i

ρ̄
(16)

The momentum equation for turbulent fluctuations is obtained by
taking the ensemble phase average of Eq. (9) and subtracting the
resultant equation from Eq. (9),

ρ
∂ut

i

∂t
+ ρ

(↔
u j + ua

j

) ∂ut
i

∂x j
= −ρut

j

∂
↔
ui

∂x j
− ρut

j

∂ua
i

∂x j
+ ut

i

∂ρut
j

∂x j

− ∂
(
ρut

i u
t
j

)t

∂x j
− ∂pt

∂xi
+ ∂σ t

i j

∂x j
− ρ tℵ〈u〉,i

〈ρ〉 (17)

In Eqs. (16) and (17),ℵ↔
u ,i

andℵ〈u〉,i represent the net forces on a fluid
element in the long-time-averaged and phase-averaged flowfields,
which can be written as

ℵ↔
u ,i

= −∂
(
ρua

i ua
j

)
∂x j

− ∂
(
ρut

i u
t
j

)
∂x j

− ∂ p̄

∂xi
+ ∂σ̄i j

∂x j
(18)

ℵ〈u〉,i = −∂
〈
ρut

i u
t
j

〉
∂x j

− ∂〈p〉
∂xi

+ ∂〈σi j 〉
∂x j

(19)

The last terms ρaℵ↔
u ,i

/ρ̄ and ρ tℵ〈u〉,i/〈ρ〉 in Eqs. (16) and (17)
can be neglected, providing that ρa � ρ̄ and ρ t � ρ̄.

Each of the preceding momentum equations contains a part of the
nonlinear term −ρut

i u
t
j . The time-averaged component −ρut

i u
t
j ,

which is the Reynolds stress of turbulent flow, appears in the
time-averaged momentum equation (15). The periodic component
−(ρut

i u
t
j )

a is found in the momentum equation for organized oscil-

lations (16). The remaining component −(ρut
i u

t
j )

t is present in the
momentum equation for stochastic motions (17). The term −ρua

i ua
j ,

which represents the mean correlation between the deterministic ve-
locity components, appears in both Eqs. (15) and (16). These terms
play important roles in the mechanism of energy transfer between
mean, periodic, and turbulent motions, as will be shown later.

C. Kinetic Energy Transfer Between Mean, Organized,
and Turbulent Flowfields

The equation for the kinetic energy ρ̄
↔
ui

↔
ui/2 is derived by multi-

plying Eq. (15) by
↔
ui . Rearranging the result and using the continuity

equation, we have

∂(
↔
u j ρ̄

↔
ui

↔
ui/2)

∂x j
= ρua

i ua
j

∂
↔
ui

∂x j
+ρut

i u
t
j

∂
↔
ui

∂x j
− ∂

(↔
uiρua

i ua
j + ↔

uiρut
i u

t
j

)
∂x j

+ p̄
∂

↔
ui

∂xi
+ ∂[

↔
ui (σ̄i j − p̄)]

∂x j
− σ̄i j

∂
↔
ui

∂x j
(20)

The equation for ρ̄ua
i ua

j/2 is formed by multiplying Eq. (16) by ua
i ,

taking a time average, and rearranging the result,

∂
(
ρ̄
←−−→
ua

i ua
i

/
2
)

∂t
+ ∂

(
ρ̄

↔
u j

←−−→
ua

i ua
i

/
2
)

∂x j
+ ∂

(
ρua

j u
a
i ua

i

/
2
)

∂x j

= −ρua
i ua

j

∂
↔
ui

∂x j
+ (

ρut
i u

t
j

)a ∂ua
i

∂x j
− ∂ua

i pa

∂xi
+ pa

∂ua
i

∂xi

− ρua
i ua

j

∂ua
i

∂x j
− ∂

{
ua

i

[(
ρut

i u
t
j

)a − ρua
i ua

j

]}
∂x j

+ ∂ua
i σ

a
i j

∂x j
− σ a

i j

∂ua
i

∂x j
−

ua
i ρ

aℵ↔
u ,i

ρ̄
(21)

The equation for ρ̄
←−−→
ut

i u
t
i/2 can be similarly obtained by multiplying

Eq. (17) by ut
i , taking a time average, and rearranging the result,

∂

∂t

(
ρ̄
←−−→
ut

i u
t
i

2

)
+ ∂

∂x j

(
ρ̄

↔
u j

←−−→
ut

i u
t
i

2

)
+ ∂

∂x j

(
ρua

j u
t
i u

t
i

2

)
= −ρut

i u
t
j

∂
↔
ui

∂x j
− (

ρut
i u

t
j

)a ∂ua
i

∂x j
− ρut

i u
t
j

∂ua
i

∂x j

− (
ρut

i u
t
j

)t ∂ua
i

∂x j
− ∂

(
ρut

j u
t
i u

t
i

/
2
)

∂x j
+ ∂

(
ut

i

〈
ρut

i u
t
j

〉)
∂x j

− 〈
ρut

i u
t
j

〉 ∂ut
i

∂x j
− 〈

ρut
i u

t
j

〉 ∂ut
i

∂x j
− ut

i

∂pt

∂xi

+ ∂ut
iσ

t
i j

∂x j
− σ t

i j

∂ut
i

∂x j
− ut

iρ
tℵ〈u〉,i
〈ρ〉 (22)

Each kinetic energy equation contains convection, production,
pressure work, and dissipation terms. The production terms are of
particular interest in understanding the energy exchange among the

three constituent flowfields. The term ρut
i u

t
j∂

↔
ui/∂x j serves as a

pathway for exchanging the kinetic energy between the mean and
turbulent fields. The term ρua

i ua
j∂

↔
ui/∂x j characterizes the energy

transfer between the mean and deterministic fields and provides a
basis for explaining the phenomena of flow-turning loss and acous-
tic streaming. The former refers to the loss of acoustic energy to
the mean flow due to misalignment between the acoustic and mean
flow velocities.20 The latter describes the modification of the mean
flowfield due to impressed periodic excitation. The energy exchange
between the deterministic and turbulent fields is characterized by the
term (ρut

i u
t
j )

a∂ua
i /∂x j . Obviously, the introduction of organized

flow oscillations provides an additional pathway to transfer energy
from the mean flowfield to turbulent motion in comparison with sta-
tionary flow conditions. The viscous dissipation terms in these three
energy equations, that is, σ̄i j∂

↔
ui/∂x j , σ a

i j∂ua
i /∂x j , and σ t

i j∂ut
i/∂x j ,

can also be found in the time-averaged thermal energy equation, as
will be shown later, accounting for the transfer between kinetic and
internal energy.

D. Potential Energy and Heat Release
The equation for the potential energy of periodic motions,

εp = (pa)2/(2ρ̄ · c̄2), can be obtained by manipulating Eq. (11):

∂[(pa)2/(2ρ̄ · c̄2)]

∂t
+ ↔

u j
∂[(pa)2/(2ρ̄ · c̄2)]

∂x j
+ ua

j

∂[(pa)2/(2ρ̄ · c̄2)]

∂x j

= −pa
∂ua

j

∂x j
− paua

j

γ p̄

∂ p̄

∂x j
− (pa)2

p̄

∂
(↔
u j + ua

j

)
∂x j

+ (γ − 1)

γ p̄
·
{

pa

(
ρRT t

∂ut
j

∂x j

)a

+ ·pa

[
−

(
∂q̇ ′′

i

∂xi

)a

+ 	a

]

+ paq̇a

}
− pa

γ p̄
· ∂

[
R
(
ρut

j T
t
)a]

∂x j
−

(
pa

p̄

)2 ℵ p̄

2γ
(23)

where ℵ p̄ = ∂ p̄/∂t + (
↔
u j + ua

j )∂ p̄/∂x j .
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Fig. 1 Mechanisms of energy exchange among mean, periodic, and stochastic motion in turbulent reacting flows.

Combining Eqs. (21) and (23), we obtain the equation for total
energy of periodic motions ε based on the definition given in Eq. (7),

∂ε̄

∂t
+ ↔

u j
∂ε̄

∂x j
+ ua

j

∂ε

∂x j
+ ∂ua

j pa

∂x j

= paua
j

γ p̄
· ∂ p̄

∂x j
− (pa)2

p̄
· ∂

(↔
u j + ua

j

)
∂x j

− ρua
i ua

j

∂
↔
ui

∂x j

+ (
ρut

i u
t
j

)a ∂ua
i

∂x j
+ (γ − 1)

γ p̄
· pa

(
−

(
∂q̇ ′′

i

∂xi

)a

+ 	a

)
+ (γ − 1)

γ p̄
· paq̇a + ∂ua

i σ
a
i j

∂x j
− σ a

i j

∂ua
i

∂x j

− pa

γ p̄
· ∂

[
R
(
ρut

j T
t
)a]

∂x j
+ (γ − 1)

γ p̄
· pa

(
ρRT t

∂ut
j

∂x j

)a

−
(

ρ̄ua
i ua

i

2

)
· ∂

↔
u j

∂x j
− (

ρua
i ua

i

/
2
)∂ua

j

∂x j
− ρua

i ua
j

∂ua
i

∂x j

− ∂
{

ua
i

[(
ρut

i u
t
j

)a − ρua
i ua

j

]}
∂x j

−
(

pa

p̄

)2 ℵ p̄

2γ
−

ua
i ρ

aℵ↔
u ,i

ρ̄

(24)

Finally, the transport of mean thermal energy can be obtained from
the long-time average of Eq. (10),

∂(ρ̄cv

↔
T )

∂t
+ ∂(ρ̄

↔
u j cv

↔
T )

∂x j
= −∂

(
ρua

j cvT a
)

∂x j
− ∂

(
ρut

j cvT t
)

∂x j

− ∂q̇ ′′
i

∂xi
− p

∂u j

∂x j
+ σ̄i j

∂
↔
ui

∂x j
+ σ a

i j

∂ua
i

∂x j
+ σ t

i j

∂ut
i

∂x j

+ σ̄i j

∂
(
ua

i + ut
i

)
∂x j

+ σ a
i j

∂
(↔
ui + ut

i

)
∂x j

+ σ t
i j

∂
(↔
ui + ua

i

)
∂x j

+ ¯̇q (25)

The term pa∂ua
j/∂x j appears in both Eqs. (21) and (23), but with

opposite signs. It facilitates the exchange between the kinetic εk and
the potential εp energies. When pa and ∂ua

j/∂x j are in phase, energy

flows from its potential to its kinetic component and vice versa.
The convection of the energy flux ∂ua

j pa/∂x j on the left-hand side
of Eq. (24) represents the transport of acoustic energy within the
flowfield. This term vanishes on integration over the entire flowfield
for a closed system without energy flow across the boundary.

The source term (γ − 1)paq̇a/γ p̄ on the right-hand side of
Eq. (24) represents the contribution from unsteady heat release.
Let θ be the phase difference between pressure and heat release
oscillations, then

(γ − 1)paq̇a

γ p̄
= (γ − 1)|paq̇a | cos θ

γ p̄
(26)

If the oscillations of pressure and heat release are in phase
(−π/2 < θ < π/2), this term is positive, and energy is supplied to
the oscillatory flowfield. Otherwise, energy is subtracted from the
system for π/2 < θ < 3π/4. This result is closely related to the well-
known Rayleigh criterion. The unsteady heat flux −(∂ q̇ ′′

i /∂xi )
a and

dissipation 	a terms play a similar role in driving flow oscillations
as unsteady heat release, as shown in Eq. (24), but their effects are
not as significant as the heat release term. The effect of viscous
dissipation, 	 = σi j∂ui/∂x j , is twofold. It always converts the os-
cillatory flow energy into its thermal counterpart, but it also tends to
increase the energy of periodic motion, when in phase with pressure
fluctuation.

The energy exchange mechanisms in a turbulent reacting flow are
shown in the schematic diagram in Fig. 1. The oscillatory motions
can acquire energy through several different pathways. They may
extract energy from the mean flowfield and chemical reactions, ex-
change energy with background turbulent motion, or be dissipated
into thermal energy through viscous damping. When there are no
chemical reactions, the primary energy provider for periodic mo-
tions is the mean flowfield and/or boundary effects. With combus-
tion, heat release from chemical reactions is the major power source
for driving periodic motions. The transfer of energy from chemi-
cal reactions to the periodic flowfield only takes place when heat
release is in phase with pressure oscillation. These results provide
a theoretical foundation for the analysis of oscillatory flowfields in
gas-turbine combustors.

III. LES Database
The LES database was established by simulating the flowfields

of a lean-premixed swirl-stabilized combustor, operating under a
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variety of conditions.5,16,17 The formulation employs the Favre-
filtered conservation equations of mass, momentum, and energy
in three dimensions. The subgrid-scale (SGS) terms are modeled
using a compressible-flow version of the Smagorinsky model sug-
gested by Erlebacher et al.23 The damping function of Van Driest is
used to take into account the flow inhomogeneities near the walls. A
level-set flamelet library approach5 is applied to simulate premixed
turbulent combustion. In this approach, the evolution of the filtered
flame surface is modeled using a level-set G-equation, where G is
defined as a distance function outside the flame front. Thermophys-
ical properties are obtained using a presumed probability density
function along with a laminar flamelet library. Although the model
does not explicitly consider the flame stretch effect, which may alter
the local flame structure and cause flame extinction or liftoff, it has
been shown to be able to capture the salient features of unsteady
turbulent flame behavior.5

Boundary conditions must be specified to complete the for-
mulation. At the inlet boundary, the mass flow rate and tem-
perature are specified. The pressure is obtained from a one-
dimensional approximation to the axial momentum equation, that
is, ∂p/∂x = −ρ∂u/∂t − ρu∂u/∂x . The mean axial-velocity distri-
bution follows the one-seventh power law by assuming a fully de-
veloped turbulent pipe flow. The radial and azimuthal velocities are
determined from the swirler vane angle. Turbulence properties at the
inlet are specified by superimposing broadband disturbances with
an intensity of 15% of the mean quantity onto the mean velocity
profiles. In addition, the acoustic response to disturbances arising
from downstream is modeled by means of an impedance function.5

At the outlet boundary, the characteristic conditions proposed by
Poinsot and Lele24 are applied, and a time-invariant backpressure
is specified. Finally, the no-slip adiabatic conditions are enforced
along all of the solid walls.

The resultant governing equations and boundary conditions are
solved numerically by means of a density-based, finite volume
methodology. The spatial discretization employs a second-order,
central-differencing method in generalized coordinates. Fourth-
order matrix dissipation, along with a total-variation-diminishing
switch developed by Swanson and Turkel25 and tested by Oefelein
and Yang,26 are included to ensure computational stability and to
prevent numerical oscillations in regions with steep gradients. Tem-
poral discretization is obtained using a four-step Runge–Kutta in-
tegration scheme. A multiblock domain decomposition technique,
along with static load balance, is used to facilitate the implemen-
tation of parallel computation with a message passing interface at
the domain boundaries. Error analysis of the numerical scheme has
been performed using the methods developed by Apte and Yang27

and Lu et al.28 The effects of Courant–Friedrichs–Lewy number,
artificial dissipation, and SGS terms on the calculated turbulent en-
ergy spectrum are carefully examined. The results indicate that the
present numerical method offers a reasonable predictive capability
for turbulent flows because of its relatively low dissipation and high
accuracy. The theoretical and numerical framework described ear-
lier has been validated by Apte and Yang,29 Huang et al.,5 Huang,22

and Lu et al.28 against a wide variety of flow problems to establish
its credibility and accuracy.

The physical model considered herein consists of a single swirl
injector, an axi-symmetric chamber, and a choked nozzle, simulat-
ing the experiment conducted by Broda et al.30 and Seo.31 Gaseous
methane is injected radially from the centerbody through 10 holes
immediately downstream of the swirler vanes. The fuel/air mixture
is assumed to be perfectly premixed before entering the combustor.
The chamber measures 45 mm in diameter and 235 mm in length.
The baseline condition includes an equivalence ratio of 0.573 and
a chamber pressure of 0.463 MPa. The mass flow rates of the nat-
ural gas and air are 1.71 and 50.70 g/s, respectively. The inlet flow
velocity of 86.6 m/s gives rise to a Reynolds number of 3.5 × 104

based on the height of the inlet annulus. The inlet temperature of
660 K corresponds to the case of unstable combustion reported in
Refs. 30 and 31. Two different swirl angles of 30 and 55 deg are
investigated in the current study. The corresponding swirl numbers,
defined as the ratio of the axial flux of the tangential momentum to

Fig. 2 Schematic of grid system, 3.44 million total grid points, every
second, third, and fifth grid point in azimuthal, axial, and radial direc-
tions, respectively, are shown.

the product of the axial momentum flux and a characteristic radius,
are 0.44 and 1.10, respectively.

According to the experimental observations, the dominant acous-
tic motion in the axial direction corresponds to the first longitudinal
mode. Because there exists an acoustic pressure node at the middle
of the chamber, the computational domain includes a portion of the
inlet annulus downstream of the swirler vane and the upstream half
of the chamber with a time-invariant backpressure specified at the
exit plane. To avoid the numerical singularity along the combustor
centerline, a central-square grid system, which consists of a square
grid near the centerline and a cylindrical grid in the outer region,
is adopted as shown in Fig. 2. The entire grid system has approxi-
mately 3.44 million (301 × 141 × 81) points, which are clustered in
the shear layers downstream of the dump plane and near the solid
walls to resolve the steep flow gradients in these regions. The largest
grid spacing (around 0.7 mm) falls in the inertial subrange of the tur-
bulent kinetic energy spectrum based on the inlet Reynolds number.
The computational domain is divided into 72 blocks. All of the cal-
culations are conducted on a distributed-memory parallel computer
with each block calculated on a single processor.

For each swirl number, calculations were performed for about four
flow-through times (around 12 ms) after the flowfield had reached its
stationary state to obtain statistically meaningful data for analyzing
the flow dynamics.

IV. Data Analysis
The section presents detailed descriptions of flow and flame

structures. Various data-analysis approaches, including vortex
identification, spectral analysis, and linear acoustic-modal and
hydrodynamic-stability analyses, are employed to provide direct
insights into the combustion dynamics. The proper orthogonal de-
composition (POD) technique is then introduced. It is used along
with the triple-decomposition technique to investigate the energy
exchange mechanisms in the flowfields.

A. Instantaneous Flow and Flame Structures
Figures 3 and 4 show snapshots of the vorticity-magnitude and

temperature fields on the x–r and r–θ planes for two different swirl
numbers. In both cases, the temperature fields clearly exhibit en-
veloped flames anchored at the rim of the centerbody and the corner
of the backward-facing step. The flame is much more compact for the
high-swirl-number case with S = 1.10, mainly due to the enhanced
flame speed resulting from the increased turbulence intensity.17 For
the low-swirl-number case with S = 0.44, large vortical structures
arise in the shear layers downstream of the dump plane. In addition
to the swirl-induced vorticity, the volume dilation and baroclinic ef-
fects in the flame zone significantly contribute to the production of
vorticity. These vorticies are convected downstream, break up into
small-scale eddies, and are eventually dissipated by turbulent diffu-
sion and viscous damping. The same phenomenon is also observed
for the high-swirl-number case, in which well-organized vortices are
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Fig. 3 Snapshots of vorticity-magnitude and temperature field on x–r
and r–θ planes for S = 0.44.

Fig. 4 Snapshots of vorticity-magnitude and temperature field on x–r
and r–θ planes for S = 1.10.

shed from the edge of the backward-facing step. The vortex motions
downstream of the centerbody, however, become quite disordered
due to the existence of a strong central recirculating flow. For both
swirl numbers, the vortex shedding frequencies are close to that of
the first tangential mode of acoustic wave in the chamber. Flames
are contorted and convoluted by these vortex structures, thus reveal-
ing the interactions between the local flow evolution and the flame
dynamics.

B. Vortex Identification
Vorticity is commonly used to detect coherent structures in free

shear flows because these structures manifest themselves as vortices.
For wall-bounded flows, however, the use of vorticity to character-
ize flow evolution has a drawback. The vortical field inherent in
the near-wall region may override the vortices originating in the
freestream, thereby rendering the examination of flow evolution a
challenging task. To overcome this difficulty, several vortex identi-
fication techniques have been proposed, including the � criterion,32

Q-criterion33 and λ2 criterion.34 Jeong and Hussain34 compared
these detection algorithms and found that the λ2 criterion is able
to represent the topology and geometry of vortex cores correctly for
most of the flows considered in their study. These flows include an

inviscid streamwise vortex in a homogeneous shear flow, an elliptic
vortex ring, a conically symmetric vortex, a mixing layer, a circular
jet, and a Bodewadt vortex. The λ2 criterion is based on the expec-
tation that the rotational motion associated with a vortex creates a
local pressure minimum in its core to ensure the balance between
the pressure gradient and the centrifugal force. In practice, how-
ever, unsteady straining and viscous effects may lead to discrepan-
cies between the locations of the vortex core and the local pressure
minimum. Because the information about local pressure extrema
is contained in the Hessian of pressure, ∂2 p/∂xi∂x j , Jeong and
Hussain34 proposed utilizing the equation for ∂2 p/∂xi∂x j , which
can be derived from the momentum equation for an incompressible
flow as follows, to help explore the vortical flow structure:

dSi j

dt
− v

∂2 Si j

∂xk∂xk
+ �ik�k j + Sik Sk j = − 1

ρ

∂2 p

∂xi∂x j
(27)

where � and S are the asymmetric and symmetric components of
∇u. The first two terms in the preceding equation represent unsteady
straining and viscous effects, respectively. If we neglect these two
terms, a variational analysis indicates that the pressure attains a local
minimum if and only if λ2 is negative, where λ2 is one of the three
eigenvalues of the tensor �ik�k j + Sik Sk j , and λ1 < λ2 < λ3.

In the current study, both vorticity magnitude and the λ2 crite-
rion are employed to visualize vortical structures. Figure 5 shows
snapshots of the isovorticity surface at |ω| = 75,000 s−1 (Fig. 5a)
and the iso-λ2 surface at λ2 = −2.5 × 109 s−2 (Fig. 5b) for S = 0.44
and 1.10. Because strong vorticity exists near the wall, the vorticity
field in the region r > 2 cm is blanked to provide a clear view of
the vortical structures inside the chamber. For the low-swirl-number
case, a vortex spiral evolves from the shear layer originating at the
backward-facing step due to the Kelvin–Helmholtz instabilities in
both the axial and azimuthal directions. This vortical structure gy-
rates around the centerline and persists for about several turns before
breaking up into small fragments. The spiral winds in the direction
opposite to the main swirling flow, although the whole structure
follows the main stream. For the high-swirl-number case, a spiral
vortical structure is also observed. The structure, however, is much
more complex because of the high centrifugal force. It spreads out-
ward rapidly and soon breaks up into small-scale eddies. The vortical
structures observed using the iso-λ2 surface are more distinct than
those observed using the isovorticity surface.

Figure 6 shows snapshots of the isovorticity and iso-λ2 surfaces
with the region r > 1 cm blanked. It is difficult to identify a dis-
tinct structure from the isovorticity surface for both the high- and
low-swirl-number cases. However, the iso-λ2 surface indicates the

a)

b)

Fig. 5 Snapshots of a) isovorticity surface at ω = 75,000 s−1, r > 0.02 m
blanked and b) iso-λ2 surface at λ2 = −−2.5 ×× 109 s−2 for S = 0.44 and
1.10.
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a)

b)

Fig. 6 Snapshots of a) isovorticity surface at ω = 75,000 s−1, r > 0.01 m
blanked and b) iso-λ2 surface at λ2 = −−2.5 ×× 109 s−2 for S = 0.44 and
1.10.

presence of a spiral vortex structure for S = 0.44 and a double helix
vortex structure for S = 1.10, both originating from the shear layer
near the centerbody.

The evolution of these spiral vortex structures can be regarded as a
kind of vortex shedding process with well-defined frequencies, as in-
dicated in Sec. IV. A. One may conjecture5 that the vortical motions
in the shear layers resonate with acoustic oscillations in the cham-
ber. In the present configuration, two shear layers exist downstream
of the rear-facing step and the centerbody. The axial momentum
thickness θ0 of each shear layer is estimated to be around 0.1 mm
for the low-swirl-number case, based on the calculated mean ve-
locity distribution. For the high-swirl-number case, the momentum
thickness of the lower shear layer (≈0.25 mm) differs from its upper
counterpart (≈0.05 mm) by a factor of five, due to its stronger swirl
strength. A linear stability analysis has been carried out to provide
more insight into the shear-layer instability phenomena for annular
swirling flows in an open atomsphere.35 The geometrical parameters
were selected to match the current physical model. The effects of
momentum thickness, swirl strength, and density and velocity ratios
were studied systematically with different azimuthal wave numbers.
The frequencies predicted to be most amplified are different for the
two swirl numbers considered herein, mainly due to the disparity of
the axial momentum thickness between the two cases. In addition,
the predicted values are much higher than the vortex-shedding fre-
quency, which corresponds to the frequency of the first tangential
(1T) acoustic mode of motion in the present chamber. This observa-
tion indicates that the acoustic oscillation acts as a forced excitation
to the system. The shear layers respond to the excitation by locking
their shedding frequencies close to the forcing frequency.

C. Linear Acoustic Modal Analysis
Because the most problematic type of instability in a gas-turbine

combustor involves the coupling between acoustic motion and flame
dynamics, a prerequisite of any combustion instability research is the
identification of acoustic eigenmodes in the combustor. Following
the approach detailed in Refs. 36 and 37, a wave equation charac-
terizing the acoustic instability can be derived as follows, subject to
appropriate boundary conditions:

∇2 p′ − 1

c̄2

∂2 p′

∂t2
= h(ū, p̄, u′, p′, q ′, . . .) (28)

where the prime denotes a fluctuating quantity and c̄ the mean sound
speed in the chamber. The source term h involves all of the volu-
metric and surface effects. If all of the source terms are ignored,
the linearized version of Eq. (28) reduces to a Helmholtz equation,

Table 1 Oscillation frequencies predicted
by linear acoustic modal analysis

Mode Frequency, Hz

First longitudinal 1L 1,760
First tangential 1T 10,712
Second tangential 2T 17,820
First radial 1R 22,456

Fig. 7 Normalized acoustic pressure fields of 1T and 2T modes:——,
positive values and - - - -, negative values.

which can be subsequently solved to determine the frequencies and
spatial distributions of the normal acoustic modes of the system. An
effective solution procedure,37 which was recently constructed for
problems involving complex configuration and nonuniform distri-
butions of mean flow properties, is employed here for the acoustic
modal analysis. The computational domain includes both the inlet
annulus and the chamber. The mean flow properties were acquired
from the LES database, and the choked exit nozzle is treated as an
acoustically closed boundary. The acoustic impedance of the swirler
was tuned to match the measured acoustic pressure distribution in the
inlet annulus.30 The predicted normal acoustic frequencies are sum-
marized in Table 1. Note that, for each tangential acoustic mode, two
solutions are found, and their spatial distributions shift away from
each other in the circumferential direction. In the present cylindri-
cal combustor configuration, the tangential acoustic wave can be
expressed in the following general form:

p′ = A(r, z) cos(mθ − ωt + φ) (29)

where A(r, z) is the amplitude, m an integer, θ the azimuthal coor-
dinate, ω the radian frequency, and φ the phase angle determined
by the initial condition. Equation (29) can be expanded as

p′ = A(r, z) cos(mθ + φ) cos ωt

+ A(r, z) cos(m(θ − π/2m) + φ) sin ωt (30)

The two terms on the right-hand side of Eq. (30) are also the solu-
tion of the Helmholtz equation, representing the standing transverse
acoustic waves in the chamber. Figure 7 shows the calculated nor-
malized acoustic pressure distributions of the 1T and second tan-
gential (2T) modes. The circumferential phase shifts between the
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Fig. 8 Power spectral densities of pressure fluctuations immediately
downstream of dump plane and spatial distributions of 1T and 2T modes
of acoustic oscillation for S = 0.44 and 1.10.

two constituent wave motions for the 1T and 2T modes are 90 and
45 deg, respectively. This observation will be used along with the
spectral and POD analyses to further identify the acoustic motions
in the chamber, as will be shown later.

D. Spectral Analysis of Oscillatory Field
The oscillatory flowfield was carefully surveyed to provide di-

rect insight into the driving mechanism for acoustic oscillations. A
vast number of probes were employed to register the flow motions
in various parts of the chamber. The fast Fourier transform (FFT)
technique was used for the spectral analysis. Figure 8 shows the
frequency contents of the pressure fluctuations immediately down-
stream of the dump plane. For S = 0.44, the dominant frequencies
of 1761; 10,367; and 17,618 Hz correspond to the first longitudi-
nal (1L), 1T, and 2T modes of acoustic motion in the chamber,
respectively. The slight deviation from the prediction of the linear
acoustic modal analysis results from the uncertainties in specifying
the averaged speed of sound and the chamber length. Note that the
experimental measurements30 also indicate the existence of the sec-
ond longitudinal (2L) mode at 3500 Hz. This mode, however, was
suppressed in the present numerical study because the backpressure
at the end of the computational domain was fixed at a prespecified
value, a condition that prohibited the excitation of higher modes of
longitudinal oscillations. For S = 1.10, the longitudinal wave disap-
pears and the frequencies of the 1T and 2T modes shift slightly to
10,795 and 18,133 Hz, due to the change in the temperature field.
Good agreement in the acoustic mode shape between the calculated
and analytical results is obtained for both the 1T and 2T acous-
tic modes. Although the oscillation frequencies at 22,157 Hz for
S = 0.44 and 21,872 Hz for S = 0.11 are close to the first radial
(1R) acoustic mode (22,456 Hz), the mode shapes do not match
well with the analytical result from classical acoustics and, thus,
cannot be regarded as the 1R mode. This observation is also con-
firmed by the POD analysis to be discussed. The inlet swirl number
exerts little influence on the acoustic frequencies, but plays a sig-
nificant role in determining the wave amplitudes. The suppression
of low-frequency oscillations in the high-swirl-number case may be
attributed to the enhanced flame stiffness, which reduces the flame
sensitivity to imposed disturbances.

E. Flame Surface and Heat Release Evolution
To understand the mutual coupling between the flame dynamics

and flow oscillation, the total heat release and flame surface area

Fig. 9 Power spectral densities of total flame surface-area and heat-
release fluctuations for S = 0.44 and 1.10.

were analyzed in the frequency domain. The overall heat release in
the chamber can be obtained from

Q̇ = ρu�h0
f ST A (31)

where ρu is the unburned gas density, ST the subgrid turbulent flame
speed, and �h0

f the heat of reaction. A is the total filtered flame sur-
face area, which can be evaluated numerically based on the level-set
approach.17,38,39

Figure 9 shows the power spectral densities of the total filtered
flame surface-area and heat-release fluctuations. At S = 0.44, a dom-
inant mode exists at 1761 Hz in the flame surface oscillation, which
corresponds to the 1L acoustic mode of the combustor. A higher har-
monic at 3320 Hz is also found, approximately twice the frequency
of the 1L mode. Although transverse acoustic motions including the
1T and 2T modes are observed, the flame surface-area oscillations
do not exhibit such a high-frequency behavior. At S = 1.10, there is
a small peak at 11,712 Hz near the 1T acoustic mode, but no cor-
responding 1L mode oscillation is found. The frequency content of
the total heat-release fluctuations bears a close resemblance to that
of flame surface-area variations. A small spike near the frequency
of 20,532 Hz, however, is observed for S = 0.44, arising from the
fluctuations in the subgrid turbulent flame speed ST (Refs. 5 and
17). In light of the preceding observations, one can conclude that
low-frequency acoustic perturbations exert a strong influence on the
fluctuations of the total flame surface area and heat release. In con-
trast, high-frequency acoustic oscillations travel through the flame
zone without significantly affecting the flame surface-area and heat-
release variations, although they may impose a significant impact
on the local flame propagation. The results agree well qualitatively
with the prediction from a companion analytical analysis of flame
response.6 The calculated mean flame surface area and the root
mean square of the fluctuating quantity for the high-swirl-number
case are much smaller than those of the low-swirl-number case.
However, owing to the increased turbulence intensity and the ensu-
ing enhancement of the flame speed in the high-swirl-number case,
the mean heat-release rate and the associated fluctuation are very
close in these two cases.

F. Acoustics and Flame Interaction
Figure 10 shows the temporal evolution of the isothermal surface

at T = 1700 K over one cycle of the 1L mode of acoustic oscil-
lation at S = 0.44. Such information provides a good insight into
the flame development because the adiabatic flame temperature is
1902 K in the present case. The phase angle θ is referenced to the
1L acoustic pressure at the chamber head end. The entire process
is dictated by the cold-flow entrainment into and mixing with hot
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Fig. 10 Temporal evolution of isothermal surface at T = 1700 K (colored by vorticity magnitude) over one cycle of 1L mode of oscillation for S = 0.44.

Fig. 11 Time histories of pressure immediately downstream of dump
plane (top), total flame surface area (middle), and rate of total heat
release (bottom) for S = 0.44:——, extracted 1L oscillations.

gases in the vortical structures in the flame zone. Figure 11 shows
the time histories of the pressure immediately downstream of the
dump plane (top), the total flame surface area (middle), and the rate
of heat release (bottom). These signals involve a wide range of fre-
quencies corresponding to turbulent-flow and acoustic oscillations.
The extracted 1L oscillations (denoted by the thick black lines) of
these quantities are also plotted for clarity. The flame surface-area
variation can be elucidated by considering its interaction with the
local oscillatory flowfield. It lags behind the pressure oscillation
by 76 deg. During the period from θ = −166 deg (t = 24.09 ms) to
14 deg (t = 24.38 ms), a relatively lower pressure field exists near the
dump plane, facilitating the delivery of the fresh reactants into the
chamber. Intensive heat release then occurs after a short fluid-mixing
and chemical-induction time. The resultant flow expansion pushes
the flame outward and causes the flame surface area to increase from
a trough to a crest. Unburned mixture fragments may be shattered
away from the main stream and generate local hot spots when con-
vected downstream. During the period from θ = 14 deg (t = 24.38
ms) to 194 deg (t = 24.66 ms), the relatively higher pressure near the

Fig. 12 Time evolution of instantaneous Rayleigh index, pa ·Q̇a(t), over
entire chamber for 1L mode of oscillation for S = 0.44.

Fig. 13 Time histories of pressure immediately downstream of dump
plane (top), total flame surface area (middle), and rate of total heat
release (bottom) for S = 1.10.
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a)

b)

Fig. 14 Temporal evolution of isothermal surface at T = 1700 K (colored by vorticity magnitude) over one cycle of 1T mode of oscillation for a)
S = 0.44 and b) S = 1.10.

dump plane prevents the fresh reactants from traveling downstream
into the chamber. The flame zone is, thus, reduced and becomes a
little more compact. The same process then repeats for another cycle
of oscillation. Figure 11 also shows that the heat-release and flame
surface-area fluctuations are nearly in phase. The former only lags
behind the flame surface-area oscillation by 4 deg. Figure 12 shows
the time evolution of the instantaneous Rayleigh index, pa · Q̇a(t),
over the entire chamber for the 1L mode oscillation. This parameter
is positive over most of the time period, suggesting the excitation
and sustenance of the 1L oscillations by the flame. For the high-
swirl-number case with S = 1.10, no obvious 1L oscillation can be
observed, as shown in Fig. 13.

Figure 14 shows the temporal evolution of the isothermal surface
at T = 1700 K over one cycle of the 1T mode of acoustic oscillation.

For both swirl numbers, new vortices are produced at the edge of
the backward-facing step and bulge the flame front. They continue
to distort the flame or even produce separated flame pockets when
traveling downstream, although for the high-swirl-number case this
process is less apparent due to the reduced flame length. This kind of
interaction between the vortex and the flame is also observed down-
stream of the centerbody. As the swirl number increases, the flame
anchored by the center recirculating flow may propagate upstream
periodically and cause flame flashback. Two mechanisms have been
identified for the occurrence of flame flashback.16 The first involves
flame propagation in the boundary layer along a solid wall where the
local velocity diminishes toward the surface. The second is associ-
ated with flow reversal, which usually results from vortical motions
or acoustic oscillations. In the current case, flashback is closely
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linked to the strong reverse flow in the center recirculation zone.
The swirl is so strong that it sometimes causes the center recirculat-
ing flow to enter into the inlet annulus. As a consequence, the flame
attached to the centerbody travels upstream and flashback occurs.

G. Proper Orthogonal Decomposition Analysis
The combustion dynamics are further explored using the POD

technique. The POD method is an empirical mathematical technique
capable of extracting dynamically significant structures from the
flowfield of concern. This method has been extensively employed
to study nonreacting flows.15,28,40−45 Its application to research in
combustion dynamics has recently received some attention.46,47

Most of the existing studies, however, adopted the techniques de-
veloped for incompressible flows, which do not consider the effects
of fluid compressibility. In the current work, we present a method
for applying the POD technique to compressible flows by intro-
ducing an acoustic-energy-based inner product, as will be shown
hereafter.

A rigorous description of the POD method can be found by
Berkooz et al.48 and Cordier and Bergmann.49 It will be briefly re-
viewed here. The POD analysis takes as input an ensemble of instan-
taneous realizations or snapshots, which is obtained from physical
experiments or numerical simulations, and extracts base functions
optimal for the representation of the data. More precisely, if we
consider a collection of observations q(x, tm) obtained at M dif-
ferent time steps tm over a spatial domain of interest �, the POD
method attempts to determine a set of orthogonal base functions
ϕ(n)(x), n = 1, . . . , M , such that the projection of q(x, tm) onto the
base functions,

q̂(x, tm) =
M∑

n = 1

a(n)(tm)ϕ(n)(x) (32)

has the smallest error, defined as 〈‖q − q̂‖2〉, where a(n)(tm) is the
expansion coefficient. The symbol 〈 〉 denotes a time or ensemble
average, and ‖ · ‖ the norm associated with the inner product (, ) in
the Hilbert space of square integral functions.

Based on the calculus of variations, the POD modes ϕ can be
determined by the following integral eigenvalue equation:∫

�

Ri, j (x, x′)ϕ(n)

j (x′) dx′ = λ(n)ϕ(n)

i (x) (33)

where Ri, j (x, x′) is a two-point spatial correlation tensor. For a stan-
dard inner product, it can be written as

Ri, j (x, x′) = 〈qi (x)q j (x′)〉 (34)

To compute POD modes, we first need to make an appropriate
choice of a vector-valued flow variable q(x, t) and define a suitable
inner product on the configuration space. For an incompressible
system, the flow variable is usually chosen as the velocity with
q = (u, v, w), and the standard inner product gives

(q1, q2) =
∫

�

(u1u2 + v1v2 + w1w2) dx (35)

The induced norm

‖q‖2 =
∫

�

(u2 + v2 + w2) dx

corresponds to the total kinetic energy over the domain � of concern.
The mean kinetic energy of the flowfield is equal to the sum of the
eigenvalues divided by two, as shown here:

E = 1

2

∫
�

〈u2 + v2 + w2〉 dx = 1

2

∫
�

Ri,i (x, x) dx

= 1

2

∫
�

M∑
n = 1

λ(n)ϕ
(n)

i (x)ϕ
(n)

i (x) dx = 1

2

M∑
n = 1

λ(n) (36)

Each eigenvalue represents the portion of the energy associated with
the corresponding eigenfunction.

For a compressible system, the flow-variable vector should in-
clude a thermodynamic parameter, such as density and pressure,
characterizing the effects of fluid compressibility. The best choices
of the inner product and norm, however, are not obvious. The stan-
dard inner product may not be a sensible choice, according to
Rowley et al.50 For example, if we select the baseline flow vari-
ables as q = (ρ, u, v, w, p), the standard inner product leads to

(q1, q2) =
∫

�

(ρ1ρ2 + u1u2 + v1v2 + w1w2 + p1 p2) dx (37)

which does not make dimensional sense and carries little phys-
ical significance. Rowley et al.50 proposed the flow variables as
q = (u, v, w, c), with c being the local speed of sound, and defined
a family of inner products as

(q1, q2) =
∫

�

(
u1u2 + v1v2 + w1w2 + 2α

γ − 1
c1c2

)
dx (38)

where γ is the ratio of specific heats and α a weighting parame-
ter. The induced norm corresponds to either the specific stagnation
enthalpy for α = 1 or the specific stagnation energy for α = 1/γ ,
respectively.

In the current study, because we are primarily concerned with
acoustic oscillations, the flow variables based on the fluctuating
quantities are preferred.51 A family of new norms accounting for the
acoustic energy is introduced. The flow-variable vector is defined
as q′ = (u′, v′, w′, p′), and a new inner product is proposed as

(q′
1, q′

2) =
∫

�

[
α1(u

′
1u′

2 + v′
1v

′
2 + w′

1w
′
2) + α2

p′
1 p′

2

ρ̄2c̄2

]
dx (39)

where α1 and α2 are two weighting parameters. If α1 = 1 and α2 = 1,
the induced norm∫

�

(
u′2 + v′2 + w′2 + p′2

ρ̄2c̄2

)
dx

is twice the total energy of the entire oscillatory flowfield. The in-
duced norm corresponds to the kinetic energy of unsteady motions
if α1 = 1 and α2 = 0 and to the potential energy if α1 = 0 and α2 = 1.

The LES database for the POD analysis contains a total of 200
data sets or snapshots for each swirl number. The spatial domain
of concern only includes the upstream portion of the computational
domain and has 2.0 million grid points. The time interval at which
the snapshots were sampled was 6.0 μs, compared with the time step
of 0.03 μs employed in the numerical simulations. Thus, the total
time span was approximately 2.1 and 12.5 times of the 1L and 1T
acoustic oscillation periods. The size of each database is around 30
GB, so that extensive computer storage space is required for POD
analysis.

Figure 15 shows the energy distributions of the POD modes based
on the acoustic pressure fields for two different swirl numbers. In
the low-swirl-number case with S = 0.44, the first two modes have
almost the same energy level, that is, 31.28 and 29.14%, and collec-
tively capture more than 60% of the total energy of the oscillatory
flowfield. A similar observation is made for the high-swirl-number
case with S = 1.10, where the first and second modes represent 37.22
and 34.16% of the total energy, respectively. In both cases, the first
16 modes account for more than 80% of the total energy. The fre-
quency spectra of the time-varying coefficients, a(n)(t), of the first

a) b)

Fig. 15 Energy distributions of POD modes based on acoustic pressure
fields for a) S = 0.44 and b) S = 1.10.
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a) b)

Fig. 16 Frequency spectra of time-varying coefficients of first six POD
modes based on acoustic pressure fields for a) S = 0.44 and b) S = 1.10.

Fig. 17 Spatial distributions of first six POD modes of fluctuating pressure field for S = 0.44.

six POD modes are shown in Fig. 16. For the low-swirl-number
case, the dominant frequencies of 10,435 Hz for the first two modes
and 17,889 Hz for the fourth and sixth modes correspond to the
1T and 2T acoustic modes in the chamber, respectively. The same
phenomenon occurs with the high swirl number, with the first two
modes and modes 3 and 4 associated with the 1T and 2T acoustic
mode of oscillations, respectively, although the dominant frequen-
cies shift slightly due to the variation in the flowfield. For both swirl
numbers, the 1L acoustic mode is not observed. This may be at-
tributed to the relatively short time span of the database compared
with the 1L acoustic oscillation period.

Figure 17 shows the spatial distributions of the fluctuating pres-
sure field for the first six POD modes for S = 0.44. The first two
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Fig. 18 Spatial distributions of first six POD modes of fluctuating pressure field for S = 1.10.

modes, shifted from each other by 90 deg in the azimuthal direc-
tion, are almost identical to the 1T acoustic mode shapes shown
in Fig. 7. The wave motion is most intensive near the dump plane,
where heat release takes place, and gradually decays downstream
along the length of the chamber. Mode 3 has an axisymmetric dis-
tribution, with its strongest oscillations in the shear layer and down-
stream of the centerbody. Modes 4 and 6 closely resemble the 2T
acoustic mode. Their mode shapes differ from each other by 45 deg
in the azimuthal direction. Mode 5 has a more complex structure
and does not correspond to a normal acoustic mode shape.

Figure 18 shows the first six POD mode shapes of the fluctuating
pressure field for S = 1.10. Similarly to the low-swirl-number case,
the first two modes match closely the 1T acoustic structure with

an azimuthal phase shift of 90 deg between them. Modes 3 and 4
correspond to the 2T acoustic mode and have an intermode phase
shift of 45 deg in the azimuthal direction. The higher modes have
much more intricate distributions but carry much less energy. All
of these results indicate that the POD method is able to capture the
detailed acoustic wave structure in the chamber. In fact, it is well
established52,53 that the optimal base functions obtained by the POD
method consist of the Fourier modes in the homogeneous (periodic)
coordinate directions, that is, in the azimuthal direction in the current
case.

Figure 19 shows the energy distributions of the POD modes for
the total acoustic energy fields, defined by Eq. (39) with α1 = 1 and
α2 = 1, for two different swirl numbers. Although the first two modes



HUANG, WANG, AND YANG 737

still dominate, they only capture about 42 and 50% of the total energy
of the oscillatory flowfields for S = 0.44 and 1.10, respectively. The
frequency spectra of the time-varying coefficient, a(n)(t), of the POD
modes were also examined (not shown). For both swirl numbers,
the 2T acoustic mode was not observed, although it was seen in the
acoustic potential energy field shown in Fig. 16. The POD method
based on the acoustic potential energy appears to be more effective
in capturing acoustic motions and will be used in the subsequent
analysis.

H. Energy Exchange Mechanisms in Oscillatory Flowfield
The instantaneous flowfield can be reconstructed from the POD

modes by means of Eq. (32). Such a procedure allows us to examine
how the various POD modes contribute to the instantaneous events
occurring in the chamber. Figure 20 shows the time histories of the
pressure and axial velocity ux immediately downstream of the dump
plane, with r = 7.5 mm for S = 0.44. The signals reconstructed, re-
spectively, from the first 2 and first 12 modes are also included
for comparison. The flowfield can be reasonably recovered with 12
modes and matches the original data well. The first two modes,
however, unambiguously capture the dominant flow motions in a
complex turbulent flowfield through proper orthogonal decomposi-
tion. A similar observation were made for the high-swirl-number
case with S = 1.10.

a) b)

Fig. 19 Energy distributions of POD modes for total acoustic energy
fields for a) S = 0.44 and b) S = 1.10.

a) b)

Fig. 20 Time histories of a) pressure and b) axial velocity immediately downstream of dump plane, r = 7.5 mm, for S = 0.44.

a) b)

Fig. 21 Temporal evolution of pressure field reconstructed from first two POD modes on a transverse plane, x = 32 mm, over one cycle of 1T mode
of oscillation for a) low swirl number S = 0.44 and b) high swirl number S = 1.10.

Figure 21 shows the temporal evolution of the reconstructed pres-
sure field based on the first two POD modes on a transverse plane,
x = 32 mm, over one cycle of the 1T mode of oscillation for two
different swirl numbers. The spinning 1T acoustic wave motions
in the azimuthal direction are clearly observed for both cases. The
phenomenon can be mathematically attributed to the existence of
two equal-valued eigenvalues corresponding to the 1T acoustic os-
cillation. According to Aubry et al.,54 the near degeneracy of the
eigenvalue problem defined by Eq. (33) is a result of the presence
of traveling waves (or structures) in the flowfield, which is also re-
lated to the spatio-temporal symmetry of the system. This kind of
behavior is encountered in many POD applications.49,55,56 Figure 22
shows the temporal evolution of the reconstructed heat-release field
based on the first two modes on the same transverse plane over one
cycle of the 1T mode of oscillation. The helical structures in the
flame development are evidenced in the shear-layer region.

Because the acoustic, that is, periodic, field is dominated by the
1T oscillation and can be well characterized by the first two POD
modes, the entire fluctuating flowfield can be expressed as the sum
of periodic and turbulent components as follows:

q̂′(x, tm) = a(1)(tm)ϕ(1)(x) + a(2)(tm)ϕ(2)(x)

+
M∑

n = 3

a(n)(tm)ϕ(n)(x) = q̂a(x, tm) + q̂t (x, tm) (40)

This representation provides us with a convenient way to analyze the
mechanisms of energy transfer among various constituent flowfields
in the combustor, as formulated in Sec. II. Figures 23 and 24 show the
distributions of Ra = paq̇a(γ − 1)/γ p̄, Rρuu = ρua

i ua
j∂ ūi/∂x j , and

Rpu = pa∂ua
j/∂x j for the 1T acoustic oscillation on a longitudinal

and a transverse plane for the two different swirl numbers, respec-
tively. Here the periodic components of the fluctuating flowfield, pa ,
q̇a , and ua

i are obtained using Eq. (40) through the POD method. The
Rayleigh parameter Ra, which appears in Eqs. (23) and (24), repre-
sents the coupling between oscillatory heat release and pressure. It
provides a qualitative measure of the extent to which unsteady heat
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a) b)

Fig. 22 Temporal evolution of heat release field reconstructed from first two POD modes on a transverse plane, x = 32 mm, over one cycle of 1T mode
of oscillation for a) low swirl number S = 0.44 and b) high swirl number S = 1.10.

a)

b)

c)

Fig. 23 Distributions of a) Ra = paq̇a(γ − 1)/γp̄, b) Rρuu =
ρua

i ua
j ∂ūi/∂xj, and c) Rpu = pa∂ua

j /∂xj for 1T mode of oscillation on
x–r and r–θ planes for S = 0.44.

release drives or suppresses flow oscillations. The acoustic motion
is amplified if Ra > 0 or damped out if Ra < 0. For both swirl num-
bers, a wavy distribution of Ra takes place along the flame front.
The Rayleigh parameter has a positive value in much of the flame
zone. The 1T acoustic oscillation is favorably correlated with the
unsteady heat release and extracts energy from chemical reactions.
In a previous work,5 the conventional decomposition technique, in
which flow variables are expressed as the sum of mean and fluctu-
ating quantities, was applied to explore the coupling between os-
cillatory heat release and pressure for the case with a swirl number
S = 0.76. The spatial distribution of the correlation between fluctu-
ating pressure and heat release, defined as the Rayleigh parameter
in Ref. 5, was presented. An array of asymmetrical dipoles, that
is, a combination of monopoles and dipoles, was observed down-

a)

b)

c)

Fig. 24 Distributions of a) Ra = paq̇a(γ − 1)/γp̄, b) Rρuu =
ρua

i ua
j ∂ūi/∂xj, and c) Rpu = pa∂ua

j /∂xj for 1T mode of oscillation on
x–r and r–θ planes for S = 1.10.

stream of the edges of the backward-facing step and the centerbody,
with an overwhelming positive value in the flame zone in spite of
the presence of strong background turbulent motions. The result
demonstrated that coherent structures are indeed a dominant feature
in the flowfield of concern. This is consistent with the observa-
tions in the current study. The difference between conventional and
triple-decomposition techniques lies in that the latter allows peri-
odic motions to be clearly separated from random turbulent motions.
Thus, we can treat periodic motions more specifically and analyze
the driving mechanisms of a particular mode of flow oscillation
more accurately, for example, the 1T mode in the current study. The
parameter Rρuu, which can be found in Eqs. (20) and (21), character-
izes the kinetic energy exchange between the mean and oscillatory
flowfields. If Rρuu is negative, energy is transferred from the mean



HUANG, WANG, AND YANG 739

to the oscillatory flowfield. A well-organized distribution of Rρuu

is observed in the shear layers downstream of the backward-facing
step and the centerbody. These structures, aligned with regions with
alternate positive and negative values, exhibit strong interactions
between the mean and periodic flowfields. The parameter Rpu, ap-
pearing in Eqs. (21) and (23), stands for the exchange between the
kinetic and potential energies of flow oscillations. Such an energy
exchange process occurs almost everywhere in the chamber, but
much more vigorously in the flame zone and the central toroidal
recirculation region.

V. Summary
A systematic data analysis has been conducted to explore the un-

derlying mechanisms responsible for driving unsteady motions in
gas-turbine systems, based on the time-resolved data obtained from
an LES study. As a specific example, the detailed flow evolution and
flame dynamics in a lean-premixed swirl-stabilized combustor op-
erating under unstable conditions was carefully examined. Various
data processing and analysis methods were developed and imple-
mented to provide direct insights into the complex flowfields.

The interplay of mean, periodic, and turbulent flow motions in
turbulent reacting flows, as well as their collective interactions with
chemical heat release, were explored using a triple-decomposition
technique. The oscillatory motions acquire energy through several
different pathways. They may extract energy from the mean flow-
field and chemical reactions, exchange energy with background tur-
bulent motion, or be dissipated into thermal energy through viscous
damping.

Results from the spectral analysis of the oscillatory flowfield and
linear acoustic modal analysis indicate the presence of a variety
of acoustic modes in the chamber, including both longitudinal and
tangential modes of oscillations. Transverse acoustic waves prevail
in the present combustor for a wide range of swirl numbers, where
longitudinal modes are present only in cases with weak swirl. Low-
frequency flow oscillations exert a strong influence on the fluctu-
ations of the total flame surface area and heat release. In contrast,
high-frequency flow oscillations have a limited effect on the global
behavior of the flame dynamics. Both vorticity magnitude and the λ2

criterion are employed to characterize the vortical flow development.
It was found that acoustic oscillation acts on the system as a forced
excitation. The shear layers respond to this excitation by locking
their vortex shedding frequencies to the acoustic forcing frequency.

The POD technique is employed along with a triple-
decomposition method to further examine the combustion dynam-
ics. A method for applying the POD technique to compressible flows
is developed by introducing an acoustic-energy-based inner product.
The transverse acoustic field can be appropriately represented by the
first two POD modes, which capture the majority of the acoustic en-
ergy associated with oscillatory flow motions. The entire flowfield
can be effectively reconstructed using the POD techniques, render-
ing the investigation of various energy-transfer mechanisms in the
flowfield a manageable task.
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