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ABSTRACT

Linear stability analysis is a useful tool for the exploration of the initial evolution of flow motions in mixing layers. A real fluid mixing layer
exhibits strong property variations and, thus, may present stability behaviors distinct from its ideal gas counterpart. The present study carries
out spatial and temporal stability analyses of nitrogen mixing layers at supercritical conditions, with special attention to the density
stratification induced by the temperature and velocity gradients across the mixing layer. The differences between the ideal gas and real fluid
approaches are discussed. The maximum spatial growth rate and the most unstable frequency evaluated based on the real fluid density
profile are found to be substantially lower than their ideal gas counterparts near the critical point, where an inflection of the density
distribution occurs in the mixing layer. Across the inflection point, the strong density stratification arising from the real fluid effect tends to
stabilize the mixing layer. The maximum growth rate and the most unstable frequency do not show a monotonic trend with the ratios of
temperature and density. In the absence of the inflection point, however, the mixing layer is destabilized and features a substantially higher
maximum spatial growth rate at lower ratios of density and temperature. The most unstable frequency and the maximum spatial growth rate
increase with increasing pressure. The real fluid effect diminishes when the pressure is away from the critical value or when there is no
inflection point in the density profile. The temporal stability analysis also indicates that a detailed density distribution plays a key role in
dictating the stability characteristics of mixing layers at supercritical pressures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101342

I. INTRODUCTION

Themixing layer is a principal feature of many complex shear flows
and has been extensively studied in a wide variety of applications.1–9

Linear stability analyses are commonly used to characterize the initial-
stage development of a mixing layer before the establishment of full-
scale vortical motions in the downstream region, which subsequently
determine the overall flow behaviors.10 Huerre and Monkewitz11 con-
ducted a review of early works on the absolute/convective and local/
global stability characteristics of mixing layers. The propagation of a lin-
ear instability wave satisfies a dispersion relation that can be solved either
theoretically or numerically. Extensive efforts have revolved around
linear stability analyses of ideal gas mixing layers, with emphasis on the
effects of various flow parameters, including density and velocity ratios,
fluid compressibility, and species combination, among others.12–20

Yu and Monkewitz13 explored the effect of variable density on
absolute and convective instabilities of two-dimensional jets and

wakes. It was found that the low density of the high-speed stream pro-
motes absolute instability while the low density of the low-speed
stream has the opposite effect. Shin and Ferziger15 studied the effects
of mean flow profiles, heat release, and variable transport properties
on the linear stability of reacting mixing layers. The flow profiles
retrieved from the solutions of boundary-layer equations along with
variable transport properties were found to be a more realistic repre-
sentation of an actual flow than analytically prescribed functions.
Kozusko et al.16 performed spatial stability of a compressible binary
mixing layer. The ratio of molecular weight between the slow and fast
streams played a significant role in determining the stability character-
istics. Day et al.17 numerically investigated the combined effects of
compressibility, heat release, and ratios of density and velocity on the
spatial stability characteristics of a compressible reacting mixing layer.
They concluded that the outer modes associated with fast and slow
freestreams tend to impose a lower global reaction rate than the central
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mode associated with the Kelvin–Helmholtz instability. Regime dia-
grams were developed to illustrate the dominant instability mode
under various parametric sets. Kennedy and Chen18 found that the
jet-to-ambient temperature ratio poses a greater impact on the insta-
bility growth rate than fluid compressibility for high Reynolds number
flows. Fedioun and Lardjane19 proposed an empirical model to predict
the stability features of compressible flows using incompressible
results. All of the aforementioned studies were devoted to ideal gas
mixing layers and did not take into account real fluid effects.

Real fluids are, however, commonly encountered in natural scien-
ces and engineering applications when the pressure exceeds the ther-
modynamic critical value of the fluid of concern.21–23 A representative
example is liquid-fueled combustion devices. Liquid fuel is often deliv-
ered at a subcritical temperature into a chamber operating at a super-
critical pressure. The injected fuel then heats up and experiences a
thermodynamic phase transition into the supercritical regime.21 Rapid
variations of thermophysical properties occur and lead to strong den-
sity stratification. Such phenomena must be taken into account in sta-
bility analyses of real fluid mixing layers.24,25 Along each isobaric line
in the density distribution, there exists an inflection point, across
which a steep gradient of density with respect to temperature appears.
Zong et al.24 found that the strong density stratification across the
inflection point has a stabilizing effect on flow development. Okong’o
and Bellan26 investigated real fluid effects on the mean flow and the
temporal stability of inviscid binary mixing layers at supercritical pres-
sure. They found that the similarity profile of the mean flow caused by
the real fluid effect showed deviation from the incompressible error
function solution. It leads to a larger temporal growth rate and short-
ens the most unstable wavelength compared to the error function
solution.

Yecko et al.27 investigated the viscous modes in the temporal
stability of two-phase mixing layers by adopting a composite error
function profile in each phase. An interfacial mode and two
Tollmien–Schlichting type modes were found to be related to the pres-
ence of the viscous boundary layer. For water atomization in air, the
viscous stability analysis resulted in better agreement with experimen-
tal measurements than its inviscid counterpart.28 Govindarajan and
Sahu29 reviewed the alterations of flow stability by viscosity stratifica-
tion in model shear flows and various industrial applications. Roy and
Segal30 performed a spatial stability analysis of viscous jets to explore
jet breakup mechanisms in both subcritical and supercritical environ-
ments. A dispersion relation was derived to quantify the effects of sur-
face tension and Weber number on the peak growth rate. As the fluid
transits from the subcritical to the supercritical state, surface tension
diminishes and the Weber number increases. The peak growth rate
approaches an asymptote with a high Weber number at supercritical
pressure. Fu and Yang31 conducted a temporal stability analysis of a
transcritical shear layer and examined the effects of density stratifica-
tion and ratios of density, velocity, and temperature. Fu et al.32

extended the analysis to study the binary mixing layer at supercritical
pressure. A linear gradient theory was employed to obtain the density
profile at the interface. The maximum temporal growth rate was found
to increase with increasing pressure or decreasing temperature.

In the present work, the spatial and temporal stability behaviors
of supercritical mixing layers with density stratification are investi-
gated over a wide range of pressure in order to shed light on real fluid
effects in the initial stage of flow evolution. A variety of density

distributions are considered, along with different pressures and ratios
of velocity and temperature. Results are compared with their ideal gas
counterparts. The paper is organized as follows. Section II presents the
theoretical formulation of the disturbance equations for real fluid mix-
ing layers and introduces the distributions of mean flow properties.
The results of the stability analyses are discussed in Sec. III, and con-
clusions are presented in Sec. IV.

II. THEORETICAL FORMULATION

For real fluid mixing layers of concern, the Reynolds numbers
are typically greater than O(102). The viscous effect on the fluctuating
flowfield can, thus, be ignored.26 If heat conduction and body force are
insignificant, the conservation equations of mass, momentum, and
energy can be written in the following primitive form:

@q
@t

þ q
@uj
@xj

þ uj
@q
@xj

¼ 0; (1)

@ui
@t

þ uj
@ui
@xj

þ 1
q
@p
@xi

¼ 0; (2)

qCp
@T
@t

þ uj
@T
@xj

 !
¼ bT

@p
@t

þ uj
@p
@xj

 !
; (3)

where q is the density, ui is the velocity component in the i-direction,
p is the pressure, T is the temperature, Cp is the constant-pressure
specific heat, and b is the volume thermal expansion coefficient. A
real fluid equation of state (EOS) is required to model the thermo-
dynamic relationship. The present study employs a modified
Soave–Redlich–Kwong (SRK) EOS,33

p ¼ RT
V � b

� aa

V V þ bð Þ ; (4)

where V is the molar volume and R is the universal gas constant. The
model coefficients aa and b account for attractive and repulsive forces
between molecules, respectively. Equation (4) can also be written in a
cubic form in terms of the compressibility factor Z,

Z3 � Z2 þ Z A� B� B2ð Þ � AB ¼ 0; (5)

where A ¼ aap=R2T2 and B ¼ bp=RT .

A. Mean flow profiles

Figure 1 schematically shows the flow configuration, a spatially
developing mixing layer with its freestream conditions denoted by the
subscripts 1 and �1, respectively. Two dimensionless parameters
are employed to describe the mean flow structure: the velocity ratio,
K ¼ U1 � U�1ð Þ= U1 þ U�1ð Þ and the temperature ratio, ST
¼ T1=T�1. The former measures the shear strength imposed on the
mixing layer and the latter measures the extent of thermophysical
property variations. The upper fluid stream is faster than the lower
stream, and thus, K remains positive. A broad range of temperature
and pressure are considered to allow for a systematic study of the fluid
flow behavior under different thermodynamic states.

For convenience, a vector q is defined to represent the primitive
variables in Eqs. (1)–(4), q ¼ q; u; v; w; T; pð ÞT . The flow variable q
is expressed as the sum of the mean and fluctuating quantities
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q x; y; z; tð Þ ¼ q y; tð Þ þ q0 x; y; z; tð Þ: (6)

The mean velocity components in the transverse and spanwise direc-
tions are neglected, v ¼ w ¼ 0, and q varies only with y and t. The
fluctuating component takes the form of a traveling wave with the
wave number k and propagating speed c,

q0 x; y; z; tð Þ ¼ q̂ yð Þexp ik x cos/þ z sin/� ctð Þ;ð (7)

where q̂ yð Þ denotes the disturbance amplitude depending only on the
transverse coordinate y and / represents the angle between the wave
propagation direction and the streamwise direction of the mean flow.
When the disturbance aligns with the mean flow direction, / becomes
zero and the resultant system becomes a two-dimensional problem.
The product of wave number and phase speed gives the angular fre-
quency x ¼ kc. In general, x, k, and c are complex numbers with
(xr ; kr; cr) in the real part and (xi; ki; ci) in the imaginary part,
respectively. In the spatial stability analysis, the disturbance frequency
x is real (xi ¼ 0), and the wave number k and wave speed c are com-
plex. In the temporal stability analysis, the wave number k is real
(ki ¼ 0), and the frequency and wave speed are complex.

Following common practice, the above equations are non-
dimensionalized using the initial momentum thickness h, average
mean velocity U ¼ U1 þ U�1ð Þ=2, freestream temperature T1, and
density q1 as the characteristic scales. The flow variable vector q can,
thus, be normalized as q� ¼ q�; u�; v�; w�; T�; p�ð ÞT . The normal-
ized angular frequency x� ¼ xh=U is related to the Strouhal number
St ¼ f h=U asx� ¼ 2pSt. For brevity in notation, the symbol � carried
by dimensionless variables is omitted hereafter. The hyperbolic tangent
function suggested by Monkewitz and Huerre12 is used for the mean
velocity profile in the present analysis,

u ¼ 1þ Ktanh
y
2
: (8)

The normalized mean temperature distribution is similarly expressed
by a hyperbolic tangent function,

T ¼ ST þ 1
2

þ ST � 1
2

tanh
y
2
: (9)

The normalized mean pressure is assumed to be unity across the entire
space, and the density distribution is obtained accordingly using the
selected EOS.

B. Perturbation equations

Substitution of Eqs. (6) and (7) into Eqs. (1)–(4), and then linear-
ization, leads to a set of ordinary differential equations for the pertur-
bation amplitudes,

v̂y ¼ �ik u cos/� cð Þ q̂
q
� ik cos/û � qy

q
v̂ � ik sin/ŵ; (10)

ikq u cos/� cð Þû þ quyv̂ ¼ �ik cos/p̂; (11)

p̂y ¼ �ikq u cos/� cð Þv̂; (12)

q u cos/� cð Þŵ ¼ � sin/p̂; (13)

T̂ þ Ty

ik u cos/� cð Þ v̂ ¼ n1p̂; (14)

T̂ ¼ n2p̂ þ n3q̂; (15)

where the subscript y denotes the gradient with respect to the vertical
coordinate y. The parameters n1, n2, and n3 can be determined with
the fluid thermodynamic properties as follows:

n1 ¼
�b�T
�q�Cp

;

n2 ¼ 1� �qR�T
@Z
@p

� �
�T

� ��
�Z�qRþ �qR�T

@Z
@T

� �
�p

� �
;

n3 ¼ ��Z �T

�
�Z�q þ �q�T

@Z
@T

� �
�p

� �
:

(16)

For ideal gases, Eq. (16) degenerates to

n1 ¼
1

qCp
; n2 ¼ qR; n3 ¼ �T

q
: (17)

After multiple manipulations of Eqs. (10)–(15), a second-order
ordinary differential equation for the pressure perturbation amplitude
is obtained as follows:

p̂yy �
2uy cos/

u cos/� c
þ Ty

n3q

 !
p̂y � k2 1� u cos/� cð Þ2 n1 � n2

n3

� �
p̂ ¼ 0:

(18)

Equation (18) indicates that the fluctuating field depends strongly
on the fluid volumetric properties in terms of the compressibility fac-
tor manifested through the coefficients n1, n2, and n3. These quantities
vary closely with pressure and temperature, as shown in the general-
ized compressibility factor chart in Fig. 2, where pr and Tr are the
reduced pressure and temperature. For each isobaric line, there exists a
temperature corresponding to the inflection point, across which the
compressibility factor changes substantially. The fluid behaves like an
ideal gas in the limit of low pressure and high temperature with a com-
pressibility factor of unity.

With the use of the SRK EOS, the parameters n1, n2, and n3 can
be explicitly written as a function of fluid thermodynamic properties.
Equation (18) becomes

p̂yy �
2uy cos/

u cos/� c
� bTy

� �
p̂y � k2 1� u cos/� cð Þ2

a2

� �
p̂ ¼ 0:

(19)

FIG. 1. Schematic of spatially developing mixing layer.
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In the present study, the mean pressure distribution is uniform.
The mean temperature and density gradients are related as bTy

¼ �qy=q. With the introduction of M � ðu cos/� cÞ=a for
simplicity, the dimensionless form of the disturbance equation
becomes

p̂yy �
2uy cos/

u cos/� c
þ qy

q

� �
p̂y � k2 1�M2ð Þp̂ ¼ 0: (20)

This equation is valid for any fluid mixing layer over the entire range
of thermodynamic states, without the inclusion of the diffusion and
surface-tension effects. Care must be exercised, however, when apply-
ing this equation to problems involving different thermodynamic
phases.

Equation (20) appears to be identical to that for ideal gases with
mean density variation employed by Shin and Ferziger.15 As men-
tioned previously, because of thermodynamic nonideality and prop-
erty anomaly, the stability characteristics of a real fluid may exhibit
features distinct from their ideal gas counterparts. For example, the
speed of sound in a real fluid depends on both temperature and pres-
sure but in an ideal gas only on temperature. Figure 3 shows the varia-
tion of the speed of sound of nitrogen as a function of temperature at
different pressures. At subcritical pressure, the speed of sound
decreases with increasing temperature in the liquid phase, reaches its
minimum at the boiling point, and then increases in the gas phase.
The discontinuity occurs at the liquid-to-gas phase transition. Under
supercritical pressure, the trend is qualitatively the same, but rather
than a discontinuity, there is a smooth transition from liquid-like to
gas-like supercritical fluid. In addition, the magnitude of the relative
density gradient of a general fluid qy=q may be dramatically different
from that of an ideal gas. The relationship between density and
temperature gradients along isobaric lines can be rewritten as qy=q
¼ � lJCpq þ 1

� �
Ty=T , where lJ is the isothermal Joule–Thomson

coefficient.
Figure 4 shows the variation of the correction term lJCpq þ 1

� �
for nitrogen along several isobaric lines. For a real fluid mixing layer,
the magnitude of the correction term deviates significantly from unity,
especially near the critical point of the substance. A real fluid EOS is
required to capture such deviation. At the ideal gas limit, the

correction term is equal to unity and the disturbance equation for ideal
gas mixing layers reduces to

p̂yy �
2uy cos/

u cos/� c
� Ty

T

 !
p̂y � k2 1�M2ð Þp̂ ¼ 0: (21)

For an incompressible mixing layer, the disturbance equation takes the
following form, with the correction term decreasing to zero

p̂yy �
2uy cos/

u cos/� c

� �
p̂y � k2 1�M2ð Þp̂ ¼ 0: (22)

In the present work, two-dimensional linear stability analysis is con-
ducted and the disturbance governing equation is given by setting
/ ¼ 0. That is, the wave propagation direction is identical to the
streamwise direction.

C. Boundary conditions

In the far freestream, all the property gradients of the mean flow
vanish. Therefore, Eq. (22) for the pressure amplitude is reduced to
the following form:

FIG. 2. Compressibility factor of nitrogen as function of temperature and pressure. FIG. 3. Sound Speed of nitrogen as a function of temperature at various pressures.

FIG. 4. Variation of correction term with temperature at different pressure.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 084106 (2022); doi: 10.1063/5.0101342 34, 084106-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


p̂yy � k2k2mp̂ ¼ 0; (23)

where km ¼ 1�M2 represents the fluid compressibility effect. The
general solution of Eq. (23) is

p̂ ¼ A1 exp kkMy½ � þ A2 exp �kkMy½ �: (24)

To ensure convergence of the solution, A1 must vanish at y ¼ þ1
and A2 at y ¼ �1. The corresponding boundary conditions become

p̂jy¼þ1 ¼ A2 exp �kkMy½ �;
p̂yjy¼þ1 ¼ �A2kkM exp �kkMy½ �;

p̂jy¼�1 ¼ A1 exp �kkMy½ �;
p̂yjy¼�1 ¼ A1kkM exp kkMy½ �:

(25)

D. Numerical method and validation

The linear stability analysis is essentially an eigenvalue problem
with two parameters k and x in the governing disturbance equation.
A shooting technique is applied to solve this problem. A fourth-order
Runge–Kutta method is employed to integrate the ordinary differential
equation, and the Newton–Raphson method is utilized to search the
eigenvalue. Both spatial and temporal stability analyses are conducted.
To validate the numerical algorithm, the spatial stability analysis of an
incompressible mixing layer is benchmarked against the work of
Monkewitz and Huerre.12 Figure 5 presents variations of the normal-
ized spatial growth rate and wave speed as a function of the Strouhal
number at different velocity ratios. Good agreement is achieved for all
velocity ratios between the present results and the literature.

III. RESULTS AND DISCUSSION

For spatial stability problems, the objective is to find the most
amplified frequency x0 that corresponds to the maximum spatial
growth rate�ki,

d �kið Þ
dx

				
x0

¼ 0: (26)

For temporal stability problems, the most unstable wavelength
k0 ¼ 1=k0 at which the corresponding maximum growth rate xi takes
place is determined by

d xið Þ
dk

				
k0

¼ 0: (27)

The low Mach number assumption is applied to most of the following
simulations.

A. Spatial stability of ideal gas mixing layer

In order to investigate the effect of the transverse density distri-
bution on stability characteristics, ideal gas mixing layers are studied
with two different mean density profiles q1 and q2, given by

q1 ¼
ST þ 1

2
þ ST � 1

2
tanh

y
2

� �� ��1

; (28)

q2 ¼
1=ST þ 1

2
þ 1=ST � 1

2
tanh

y
2

� �
: (29)

The density profile q1 is obtained by employing the ideal gas EOS for
the mixing layer with the temperature distribution defined by Eq. (9),
while q2 is calibrated to have the same freestream density ratio of
Sq;1 ¼ Sq;2 ¼ ST , but with slightly different relative density gradients,
as shown in Fig. 6.

Figure 7 shows the variation of the spatial growth rate and
wave speed with the angular frequency of an ideal gas mixing layer.
The velocity ratio varies in the range of 0.25–1.0 and ST ¼ 2:5. The
structure of the mean flow has a considerable impact on the stabil-
ity properties. The growth rate at low frequencies is relatively
insensitive to the mean density profiles, whereas it changes signifi-
cantly at high frequencies. The maximum growth rate increases
with increasing velocity ratio, implying enhanced instability down-
stream. The most unstable frequency, which is associated with the
maximum growth rate and wave speed, decreases with increasing
velocity ratio.

Figure 8 plots the variation of spatial growth rate with angular
frequency for the two density profiles. The freestream temperature
ratio varies between 0.2 and 2.5 with a constant velocity ratio of
1.0. With increasing density ratio, the peak spatial growth rate
increases and the most unstable frequency monotonically

FIG. 5. Normalized spatial growth rate and normalized phase speed as a function
of Strouhal number for incompressible flow with various velocity ratios: lines—
present results; symbols—results from Monkewitz and Huerre.12
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decreases. A lighter fluid stream with a higher velocity tends to
increase the spatial growth rate. The most unstable mode depends
strongly on the mean flow profile, for the cases with large density
stratification.

B. Spatial stability of real fluid mixing layer

Unlike an ideal gas mixing layer, a real fluid mixing layer exhibits
strong asymmetry of the mean density profile qy=q, especially near
the critical point, so the stability properties of the real fluid mixing
layer are quite distinct from their ideal gas counterparts. The spatial
stability of variable-density mixing layers of nitrogen is studied by tak-
ing into account real fluid effects at supercritical pressures. For refer-
ence, the critical temperature and pressure of nitrogen are 126K and
3.4MPa, respectively. The ambient mean pressure varies from 4 to
10MPa. The density distributions are obtained by solving the SRK
EOS with pre-specified temperature distributions in Eq. (9), denoted
as qSRK . The density ratio Sq can be determined correspondingly, in
particular, Sq ¼ 5:6 at the pressure of 10MPa and Sq ¼ 11.6 at the
pressure of 4MPa. For comparison, ideal gas mixing layers with den-
sity distributions q1 and q2 with the same freestream density ratio are
also considered. This enables us to explore the net effect of density dis-
tribution on the characteristics of flow instability.

Figure 9 shows the normalized spatial growth rates as a function
of the Strouhal number and the transverse distributions of the relative
density gradient (qy=q) and momentum flux gradient ( qu2

� �
y=qu

2).
Three different density distributions are considered at 4 and 10MPa.
The temperature and velocity ratios are fixed at 2.5 and 0.5, respec-
tively. At 4MPa, the density distribution qSRK leads to a substantially
lower maximum spatial growth rate, and the most unstable Strouhal
number becomes smaller than with ideal gas density profiles q1 and
q2. This pressure condition is close to the critical point (3.4MPa) of
nitrogen and thereby induces a strong real fluid behavior. The resul-
tant density profile imposes a crucial influence on the stability charac-
teristics of the mixing layer. At 10MPa, on the other hand, the results
associated with the density distribution q1 show good agreement with
those with qSRK , implying that the ideal gas EOS is sufficient for the
evaluation of spatial stability at such pressure. The density distribution
q2 leads to overestimation of the maximum growth rate and Strouhal
number at both pressure levels. The transverse distributions of the rel-
ative density and momentum-flux gradients associated with the den-
sity profiles q1 and q2 present large deviations from those of qSRK for
both pressure conditions. The real fluid EOS is, thus, critical to the

FIG. 6. Relative density variation of density profiles q1 and q2:

FIG. 7. Variations of spatial growth rate and phase speed with angular frequency:
ideal gas mixing layer at various velocity ratios and ST ¼ 2:5.

FIG. 8. Variation of spatial growth rate with angular frequency: ideal gas mixing
layer at various temperature ratios and K ¼ 1:0.
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prediction of flow properties and instability behaviors at supercritical
pressures. In the following simulations of this subsection, only q1 is
used for comparison since q2 results in large errors.

In order to obtain deeper insight into the effects of freestream
density ratio and density distribution near the critical point, the spatial
stability characteristics at 4MPa and a velocity ratio of 0.5 were
obtained, as shown in Fig. 10. The temperature ratio ST varies from

1.5 to 4.0 with three different sets of freestream temperatures
(T�1; T1): (120, 180), (120, 300), (125, 500) K, as shown in Fig. 11.
The corresponding density ratio Sq determined by the SRK EOS falls
in the range of 6.1–16.7. For real fluids, the lower density ratio
(Sq ¼ 6:1) tends to destabilize the mixing layer with a higher maxi-
mum growth rate, while a higher density ratio (Sq ¼ 16:7) induces a
slightly higher most unstable frequency. The ideal gas approach

FIG. 9. Variation of normalized spatial growth rate as a function of Strouhal number (upper) and transverse distributions of relative density (middle) and momentum flux (lower)
gradients, for three different density distributions, at 4 and 10 MPa.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 084106 (2022); doi: 10.1063/5.0101342 34, 084106-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


consistently fails to predict the maximum growth rate and associated
frequency information at different density ratios. The underlying rea-
son may be the under-estimation of the density gradient by the ideal
gas approach near the inflection point, where the gradient of density
with respect to temperature is steepest and is well predicted by the
SRK EOS, as shown in the q� T diagram in Fig. 11. The mean density
gradient qy can be related to @q=@T (qTÞ using the chain rule

qy ¼ qTT y: (30)

The inflection point at 4MPa is found to be 129K. The increase of the
density ratio moves the inflection point further away from the center-
line, and this trend is not obvious for ideal gas. The density ratio
increases substantially when the inflection point is located in the mix-
ing layer. The density gradients determined by Eq. (30) are quite
different for different temperature ranges and their distributions. The
presence of the inflection point in the mixing layer dictates the impor-
tance of real fluid effects in the spatial stability analysis.

To further illustrate the effect of the inflection point, Fig. 12
shows the stability characteristics of nitrogen mixing layers for four
different temperature ranges: (333–500), (200–500), (131–500), and
(125–500) K. The temperature ratio increases from 1.5 to 4.0. Among
these cases, only one (ST ¼ 4.0) covers the inflection point. The case
with the largest temperature ratio has the smallest most unstable fre-
quency and the smallest growth rate because of its largest relative den-
sity gradient. For cases in the absence of the inflection point, the ideal
gas approach gives reasonable agreement with the real fluid counter-
part, especially when the lower temperature limit moves away from
the inflection point.

All of the above analyses are based on the low Mach number
assumption, which generally is a good approximation for Mach num-
bers below 0.3. However, the Mach number effect needs to be included
when the mean flow velocity is comparable to the speed of sound.
Figure 13 shows the effect of Mach number on the stability charac-
teristics as the freestream velocity increases from 1 to 500m/s at
4MPa. The stability of the mixing layer is considerably improved,
as manifested by the decreasing of the maximum growth rate and
the most unstable frequency. The maximum growth rate is reduced
by more than 50% when the mean velocity increases from 100
to 300m/s.

C. Spatial stability of two-dimensional jets

In this subsection, the spatial stability analysis of two-
dimensional jets is studied. The mean flow velocity and temperature
profiles have functional forms similar to those described by Yu and
Monkewitz,13

u yð Þ ¼ 1� Kc þ 2KcF yð Þ;
F yð Þ ¼ ½1þ sinh2N y arcsinh 1ð Þ ��1;

T yð Þ ¼ 1þ S�1
c � 1

� �
F yð Þ;

(31)

where N is the shape factor; Kc is the velocity ratio, defined as
Kc � Uc � U1

� �
= Uc þ U1
� �

; and Sc is the temperature ratio,
Sc � T1=T c. Uc and T c are the velocity and temperature, respec-
tively, at the centerline. The shape factor N controls the velocity gradi-
ent and momentum thickness of the mixing layer. Figure 14 presents
the velocity profile and momentum thickness as a function of the
shape factor. A larger shape factor leads to a stronger velocity gradient
and thinner momentum thickness.

As in the mixing layer analyses above, two different density pro-
files, q1 and qSRK , are introduced through a prescribed temperature
distribution in Eq. (31), following the ideal gas and real fluid
approaches, and a third-density profile q2 with the same density ratio
as q1 is also included. The disturbance equation and the boundary

FIG. 10. Variation of spatial growth rate as a function of angular frequency (top), maxi-
mum spatial growth rate and most unstable frequency (middle), and transverse distribu-
tions of relative density gradient (bottom) at different temperature ratios at 4MPa (lines:
qSRK ; symbols: q1).
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conditions are the same as those for the mixing layer, see Eq. (25). The
centerline boundary conditions are given by assuming flow symmetry

p̂j y¼0 ¼ 1;
dp̂
dy

				
y¼0

¼ 0: (32)

Figure 15 shows the variation of the spatial growth rate with the
angular frequency at different velocity ratios for density profiles q1
and q2. The temperature ratio is fixed at ST ¼ 2:5. The maximum
growth rate and the most unstable frequency increase with increasing
velocity ratio. The most unstable frequency and growth rate of the jet
with q2 are larger than those with q1. These phenomena again dem-
onstrate the importance of the details of the density distribution in the
study of instability characteristics. Figure 16 shows the variation of the
maximum spatial growth rate and the most unstable angular fre-
quency at different density ratios using both real fluid and ideal gas
density profiles. The velocity ratio is fixed at 1.0. The results associated
with the real fluid density profile differ considerably from their ideal

gas counterparts. With increasing density ratio, the frequency
decreases in the real fluid case but increases in the ideal gas case.
Although the maximum growth rate decreases with the density ratio
in both cases, the decreasing rate is larger in the ideal gas approach.

FIG. 11. Distribution of density and density gradient with respect to temperature at
4 MPa (IP: inflection point).

FIG. 12. Maximum spatial growth rate and most unstable frequency at different
density ratios at 4 MPa.

FIG. 13. Variation of spatial growth rate with angular frequency at different mean
flow velocities (p ¼ 4MPa, T�1 ¼ 120 K, T1 ¼ 300 K).

FIG. 14. Dimensionless mean velocity and momentum thickness as function of
shape factor N.
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Figure 17 shows the spatial growth rate as a function of the
Strouhal number at different supercritical pressures. The maximum
growth rate and the most unstable Strouhal number increase with
increasing pressure. This result is consistent with the dominant fre-
quency predicted by high-fidelity numerical simulations of cryogenic
nitrogen injection and mixing,24 and the dominant frequency agrees
well with the most amplified frequency of the shear layer instability.
Increasing pressure tends to promote unstable flow motion and
enhance mixing. The real fluid EOS is critical for accurate prediction
of the density distribution and enabling the capture of spatial instabil-
ity during the initial development of the jet injection and mixing
processes.

D. Temporal stability of mixing layer

In temporal stability analysis, wave number is real and frequency
is complex. Figure 18 shows the variation of the normalized temporal
growth rate (xi=K) with the wave number at 4MPa for density pro-
files described previously. The velocity ratio ranges from 0.25 to 1.0,
and the temperature ratio remains constant at 2.5. The normalized
growth rates for a given density profile merge into a single curve,
which implies that the temporal growth rate is directly proportional to
the velocity ratio regardless of the density distribution. This may be
attributed to the intrinsic relationship between the imaginary part of
frequency and the velocity ratio embedded in the coefficient of the
first-order gradient of the pressure disturbance magnitude (p̂y) in Eq.
(20). The stability results predicted from the ideal gas density profiles
overestimate both the maximum temporal growth rate and the associ-
ated most unstable wave number, compared to those predicted from
real fluid density profile based on the SRK EOS.

The effect of the details of density distribution on the develop-
ment of temporal instability is further explored by varying the free-
stream temperature ratio. Figure 19 shows temporal stability results
for mixing layers at a pressure of 4MPa. The temperature and density
ratios are the same as those in Fig. 10. The results associated with the
real fluid density profile (qSRK) show that the most unstable wave
number for the density ratio of 16.7 is slightly larger than that for the
other two ratios, and the maximum normalized growth rate is the

FIG. 15. Variation of spatial growth rate with angular frequency at different
velocity ratios and constant temperature ratio of 2.5 (dashed lines: q1; solid
lines: q2).

FIG. 16. Variation of maximum spatial growth rate and most unstable angular fre-
quency at different density ratios with Kc ¼ 1:0.

FIG. 17. Variation of spatial growth rate with Strouhal number at different supercriti-
cal pressures with Kc ¼ 1:0; Tc ¼ 120 K, and T1 ¼ 300 K.
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highest at a density ratio of 6.1. The results associated with the ideal
gas density profile (q1) indicate that both the maximum normalized
temporal growth rate and the most unstable wavenumber decrease
with increasing density ratio. The detailed density distribution has a
crucial impact on temporal stability properties at supercritical pres-
sure. The discrepancy between the ideal gas and real fluid density pro-
files decreases as the temperature/density ratio increases.

Figure 20 shows the variation of the normalized temporal growth
rate with wave number at two different supercritical pressures using the
real fluid and ideal gas density profiles. The most unstable wavelength
calculated with qSRK is larger than that with q1, while the maximum
temporal growth rate shows an opposite trend. The difference of insta-
bility properties between the two density profiles becomes smaller from
4 to 10MPa, mainly due to the fact that the inflection point of the latter
is farther from the critical point than the former. A similar conclusion
was drawn earlier for the spatial stability analysis. This emphasizes the
crucial influence of the inflection point and resultant density stratifica-
tion on the linear stability analysis at supercritical pressure.

IV. CONCLUSION

Linear stability of real fluid mixing layers has been comprehen-
sively investigated at supercritical conditions, with particular attention
to the effect of density stratification induced by the velocity and tem-
perature differences across the mixing layer. A generalized inviscid dis-
turbance equation for real fluid mixing layers was derived, covering
the range of thermodynamic states of fluids. Both spatial and temporal
stability analyses were performed using hyperbolic tangent mean flow
profiles. The detailed density distribution in the mixing layer was
found to play a dominant role in determining the stability characteris-
tics of the fluctuating field.

The density profiles obtained using the ideal gas and real fluid
approaches were systematically examined. When an inflection of the
density distribution exists in the mixing layer, the induced strong den-
sity stratification tends to stabilize the mixing layer. The resultant
maximum spatial growth rate and the most unstable frequency deter-
mined from the real fluid approach are substantially lower than their
ideal gas counterparts and do not show monotonic trends with density
and temperature ratios. Outside of the inflection point, however, the
maximum spatial growth rate and the most unstable frequency
increase with increasing pressure and decreasing ratios of density and
temperature. The real fluid effect on mixing-layer stability is smaller
when the density profile does not contain an inflection in the mixing
layer or when the pressure is far from the critical value. In terms of
temporal stability, the normalized temporal growth rates merge into a
single curve at a given temperature ratio and pressure. The details of
the density distribution also play a key role in determining the tempo-
ral behaviors of mixing-layer stability.
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